首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Summary Serotonin-immunoreactive (5-HTi) neurons were mapped in the larval central nervous system (CNS) of the dipterous flies Calliphora erythrocephala and Sarcophaga bullata. Immunocytochemistry was performed on cryostat sections, paraffin sections, and on the entire CNS (whole mounts).The CNS of larvae displays 96–98 5-HTi cell bodies. The location of the cell bodies within the segmental cerebral and ventral ganglia is consistent among individuals. The pattern of immunoreactive fibers in tracts and within neuropil regions of the CNS was resolved in detail. Some 5-HTi neurons in the CNS possess axons that run through peripheral nerves (antenno-labro-frontal nerves).The suboesophagealand thoracico-abdominal ganglia of the adult blowflies were studied for a comparison with the larval ventral ganglia. In the thoracico-abdominal ganglia of adults the same number of 5-HTi cell bodies was found as in the larvae except in the metathoracic ganglion, which in the adult contains two cell bodies less than in the larva. The immunoreactive processes within the neuropil of the adult thoracico-abdominal ganglia form more elaborate patterns than those of the larvae, but the basic organization of major fiber tracts was similar in larval and adult ganglia. Some aspects of postembryonic development are discussed in relation to the transformation of the distribution of 5-HTi neurons and their processes into the adult pattern.  相似文献   

2.
Summary The postembryonic development of serotonin-immunoreactive (5-HTi) neurons was studied in the optic lobe of the blowfly. In the adult fly there are 24 5-HTi neurons invading each optic lobe. The perikarya of two of these neurons are situated in the dorso-caudal part of the protocerebrum (LBO-5HT neurons; large bilateral optic lobe 5-HTi neurons). The cell bodies of the remaining 22 neurons are located anteriorly at the medial base of the medulla (2 innervating the lobula, LO-5HT neurons; and 20 neurons innervating the medulla, ME-5HT neurons). The two central neurons (LBO-5HT neurons) are derived from metamorphosing larval neurons, while the ME- and LO-5HT neurons are imaginai optic lobe neurons differentiating during pupal development.The 5-HTi neurons of the optic lobe seem to have different ancestors. The LBO-5HT neurons are probably derived from segmental protocerebral neuroblasts, whereas the ME-and LO-5HT neurons are most likely derived from the inner optic anlage. The first 5-HTi fibers to reach the imaginal optic lobes are seen in the late third instar larva and are derived from the LBO-5HT neurons. The first ME- and LO-5HT neurons become immunoreactive at 24 h (10%) pupal development. At about 96 h (40%) of pupal development all the 5-HTi neurons of the optic lobes have differentiated and attained their basic adult morphology. The further development mainly entails increase in volume of arborizations and number of finer processes. The differentiation and outgrowth of 5-HTi processes follows that of, e.g., columnar neurons in the optic lobe neuropils. Hence, 5-HTi processes invade neuropil relatively late in the differentiation of the optic lobe.  相似文献   

3.
Summary The presence and distribution of neurons immunoreactive against antibodies to serotonin (5-HT) and gastrin/cholecystokinin (gastrin/CCK) has been studied in the larval retrocerebral complex of the blowfly Calliphora erythrocephala, a composite structure which consists of the corpus cardiacum, the corpus allatum, the thoracic gland and a portion of the cephalic aorta. Immunoreactive material was found in all these elements except in the corpus allatum. Six to eight cell bodies in the corpus cardiacum and four to eight cell bodies in the thoracic gland were 5-HT immunoreactive (5-HTi). These 5-HTi cell bodies send processes to the neuropil of the corpus cardiacum and to neurohemal sites in the cephalic aorta, corpus cardiacum and ventral part of the thoracic gland. Six to eight cell bodies in the corpus cardiacum and four to six cell bodies in the thoracic gland reacted with antibodies against gastrin/CCK. These cell bodies send processes to the neuropil of the corpus cardiacum and to neurohemal sites in the corpus cardiacum and the cephalic aorta in a pattern resembling that of the 5-HTi fibers. Additional gastrin/CCK-like immunoreactive fibers were shown to come from the central nervous system via the two nervi corporis cardiaci. An electron-microscopical analysis was performed to analyze further the morphological features revealed by the light-microscopic immunocytochemical technique. This confirmed the existence of neurosecretory-like terminals among the gland cells of the thoracic glands and the existence of neurohemal sites in several regions of the larval retrocerebral complex. Some functional aspects of the retrocerebral complex are discussed on the basis of the presented data.  相似文献   

4.
Morphology of the ventral nerve cord of the hawkmoth, Manduca sexta (Lepidoptera : Sphingidae), changes at the larval-pupal transition as several separate larval ganglia fuse to form single ganglia characteristic of the adult. We examined in detail the time course of ganglionic fusion. Changes in the relative positions of the ganglia were studied by staining the tissue with methylene or toluidine blue. Alterations in the positions and structure of individual neurons were studied by filling neurons with a cobalt-lysine complex. The first gross morphological change, anterior movement of the first abdominal ganglion, is visible within the first 24 hr after pupal ecdysis. Adult ventral nerve cord morphology is recognizable 6 days later, approximately 12 days before the adult will emerge. The sequence in which the individual ganglia fuse is invariant. During ganglionic fusion, the neuronal cell bodies and associated neuropil move out of their former ganglionic sheath and through the sheath covering the connectives. Axons between the fusing ganglia form loops in the shortening connectives. The presence of looping axons is a morphological feature that identifies the boundaries between ganglia during intermediate stages of fusion. Some individual adult neurons also show looped axons at the boundaries of fused ganglia. These axonal loops may be a valuable morphological marker by which neurons can be characterized as conserved neurons.  相似文献   

5.
Summary This paper describes the afferent projections of hair sensilla of the pro- and mesothoracic legs and the lateral thoracic sclerites of larval and adultTenebrio molitor and the corresponding set of pupal hair sensilla. The sensory neurons that innervate the hair sensilla of larval or adult insects project somatotopically into the thoracic neuropil. Different types of sensilla on the same region of the body surface project to the same zone of the ipsilateral thoracic ventral neuropil but exhibit different arborization patterns. Although there is a profound reorganization of body surface sensilla, the basic somatotopic layout of the larva is maintained in the adult. The sensory neurons that innervate the pupal hair sensilla possess central projections similar to those of the corresponding adult sensory neurons. The central projections of pupal sensory neurons are somatotopically oriented. Their projection pattern is serially homologous in the thoracic and the abdominal ganglia. The central projection pattern of the described pupal sensory neurons is constant throughout pupation. MAb 22C10 immunoreactivity allows an estimate of the timing of the early differentiation of the imaginal sensory neurons originating during pupation. Ablation experiments indicate that pupal sensory neurons influence the central projection pattern of the differentiating imaginal sensory neurons.  相似文献   

6.
Summary In the abdominal ganglia of the turnip moth Agrotis segetum, an antibody against the cockroach neuropeptide leucokinin I recognizes neurons with varicose fibers and terminals innervating the perisympathetic neurohemal organs. In the larva, the abdominal perisympathetic organs consist of a segmental series of discrete neurohemal swellings on the dorsal unpaired nerve and the transverse nerves originating at its bifurcation. These neurohemal structures are innervated by varicose terminals of leucokinin I-immunoreactive (LKIR) fibers originating from neuronal cell bodies located in the preceding segment. In the adult, the abdominal segmental neurohemal units are more or less fused into a plexus that extends over almost the whole abdominal nerve cord. The adult plexus consists of peripheral nerve branches and superficial nerve fibers beneath the basal lamina of the neural sheath of the nerve cord. During metamorphosis, the LKIR fibers closely follow the restructuration of the perisympathetic organs. In both larvae and adults the LKIR fibers in the neurohemal structures originate from the same cell bodies, which are distributed as ventrolateral bilateral pairs in all abdominal ganglia. The transformation of the series of separated and relatively simple larval neurohemal organs into the larger, continuous and more complex adult neurohemal areas occurs during the first of the two weeks of pupal life. The efferent abdominal LKIR neurons of the moth Agrotis segetum thus belong to the class of larval neurons which persist into adult life with substantial peripheral reorganization occurring during metamorphosis.  相似文献   

7.
Summary By use of an antiserum against the crustacean cardioactive peptide (CCAP) several types of bilaterally symmetrical neurons have been mapped quantitatively in the ventral nerve cord and in the brain of the meal beetle, Tenebrio molitor. The general architecture of these neurons was reconstructed from peroxidase-antiperoxidase-labelled whole-mount preparations. From the subesophageal to the seventh abdominal ganglia two types of neurons show a repetitive organization of contralateral projection patterns in each neuromere. The first type has few branches in the central neuropil and a distinct peripheral projection. The second type is characterized by an elaborate central branching pattern, which includes ascending and descending processes. Some of its peripheral branches were found to supply peripheral neurohemal areas. In the protocerebrum, 10 CCAP-immunoreactive neurons occur with projections into the superior median protocerebrum and the tritocerebrum. Immunopositive neurons were mapped in larval and various pupal stages, as well as in the adult. All types of identified neurons were found to persist throughout metamorphosis maintaining their essential structural and topological characteristics. The CCAP-immunoreactive neurons of T. molitor are compared with those described for the locust. Putative structural homologies of subsets of neurons in both species are discussed.  相似文献   

8.
Summary Ventral thoracic neurosecretory cells (VTNCs) of the blowflies, Calliphora erythrocephala and C. vomitoria, innervating thoracic neuropil and the dorsal neural sheath of the thoracico-abdominal ganglion have been shown to be immunoreactive to a variety of mammalian peptide antisera. In the neural sheath the VTNC terminals form an extensive neurohaemal network that is especially dense over the abdominal ganglia. The same areas are invaded by separate, ut overlapping serotonin-immunoreactive (5-HT-IR) projections derived from neuronal cell bodies in the suboesophageal ganglion. Immunocytochemical studies with different antisera, applied to adjacent sections at the lightmicroscopic level, combined with extensive cross-absorption tests, suggest that the perikarya of the VTNCs contain co-localized peptides related to gastrin/cholecystokinin (CCK), bovine pancreatic polypeptide (PP), Met- and Leuenkephalin and Met-enk-Arg6-Phe7 (Met-enk-RF). Electron-microscopic immunogold-labeling shows that some of the terminals in the dorsal sheath react with several of the individual peptide antisera, whilst others with similar cytology are non-immunoreactive. In the same region, separate terminals with different cytological characteristics contain 5-HT-IR. Both 5-HT-IR and peptidergic terminals are localized outside the cellular perineurium beneath the acellular permeable sheath adjacent to the haemocoel. Hence, we propose that various bioactive substances may be released from thoracic neurosecretory neurons into the circulating haemolymph to act on peripheral targets. The same neurons may also interact by synaptic or modulatory action in the CNS in different neuropil regions of the thoracic ganglion.  相似文献   

9.
Neurons containing 2 types of myotropic neuropeptides were investigated by immunocytochemistry during postembryonic development of the brain and ventral nerve cord of the blowfly Calliphora vomitoria (Diptera : Calliphoridae). Antisera raised against the insect neuropeptides Callitachykinin II (CavTK II), Locustatachykinin I (LomTK I), and Leucokinin I (LK I) were used. Callitachykinin immunoreactive (CavTK–IR) neurons were detected from the 1st-instar larva throughout development to adult. The number of CavTK–IR cell bodies in the brain was 4–16 in larval stages, 10–84 in pupal stages, and over 140 neurons in the newly emerged fly. With the CavTK antiserum, the fibers of only 4 descending neurons were detected in thoracico–abdominal ganglia throughout development. The antiserum to LomTK displayed the same neurons as that to CavTK II as well as a small number of additional neurons. Notably, there were seen about 14–20 locustatachykinin-like immunoreactive (LomTK-LI) cell bodies in the thoracico–abdominal ganglia throughout development. Leucokinin-like immunoreactive (LK-LI) neurons were labeled throughout postembryonic development. In the brain, 2–4 LK-LI cell bodies were labeled from 1st-instar larva to 8-day-old pupa, and 6 LK-LI cell bodies were labeled in the adult brain. In the abdominal ganglia, 7 pairs of LK-LI cell bodies were labeled from 1st-instar larva to 96-h-old pupa, 8 pairs in 8-day-old pupa, and 9 pairs in newly emerged fly, respectively. The CavTK containing neurons in the brain displayed a drastic increase in numbers from larval stages to adult, which indicates an addition of functional roles for this type of peptide. During earlier pupal stages, the number of CavTK–IR neurons decreased. The LK-LI neurons, however, were strongly immunoreactive throughout postembryonic development. Only one additional pair of cells appeared in the brain and 2 additional pair of cells appeared in the abdominal ganglia of the adult as compared with larvae. The continuous high expression of LK-LI material may suggest a functional role for this type of peptide during development.  相似文献   

10.
The larval antenna of Bombyx mori has 13 sensilla and about 52 sensory neurons in its distal portion. The axons form two nerve cords which unite in the cranial hemocoel to supply the brain as the olfactory nerve. The antennal imaginal disc, which is a thick pseudostratified epithelium continuous with the antennal epidermis, thickens markedly during the 5th instar by rapid cell proliferation. At the prepupal stage cell proliferation ceases and the disc everts to form a large pupal antenna. Simultaneously, an extensive cell rearrangement occurs in the antennal epidermis and the disc tissue becomes much thinner because of the abrupt expansion of antennal surface area. The two larval nerve cords thin down markedly by degeneration of axons, but they do not disintegrate totally even after the onset of pupation. The epidermis of the larval antenna forms the distal portion of the pupal antenna, while the imaginal disc forms the more basal portion. Development to the adult antenna occurs almost immediately after the onset of pupation; many adult neurons appear in the simple epidermis facing toward the thick outer side of the newly formed pupal cuticle. By 12 hours after the onset of pupation, these neurons align themselves in many transverse rows which are the first sign of the adult antennal configuration. Addition of these neuronal axons to the once-thinned nerve cords causes resumed thickening of the cords during the first 24 hours and thereafter. Differentiation of adult sensilla begins in the next 24 hours and is almost completed at the third day of pupation, which requires a total of 10 days.  相似文献   

11.
Gamma-aminobutyric acid (GABA)-like immunoreactive neurons were studied in the central and peripheral nervous system of Helix pomatia by applying immunocytochemistry on whole-mount preparations and serial paraffin sections. GABA-immunoreactive cell bodies were found in the buccal, cerebral and pedal ganglia, but only GABA-immunoreactive fibers were found in the viscero-parietal-pleural ganglion complex. The majority of GABA-immunoreactive cell bodies were located in the pedal ganglia but a few could be found in the buccal ganglia. Varicose GABA-ir fibers could be seen in the neuropil areas and in distinct areas of the cell body layer of the ganglia. The majority of GABA-ir axonal processes run into the connectives and commissures of the ganglia, indicating an important central integrative role of GABA-immunoreactive neurons. GABA may also have a peripheral role, since GABA-immunoreactive fibers could be demonstrated in peripheral nerves and the lips. Glutamate injection did not change the number or distribution of GABA-immunoreactive neurons, but induced GABA immunoreactivity in elements of the connective tissue ensheathing the muscle cells and fibers of the buccal musculature. This shows that GABA may be present in different non-neural tissues as a product of general metabolic pathways.  相似文献   

12.
Summary The adult optic lobes of the blowfly Calliphora erythrocephala were found to be innervated by more than 2000 neurons immunoreactive to antisera raised against the neuropeptides FMRFamide, its fragment RFamide, and gastrin/cholecystokinin (CCK). All of the CCK-like immunoreactive (CCK-IR) neurons also reacted with antisera to RFamide, FMRFamide and pancreatic polypeptide. A few RFamide/FMRFamide-like immunoreactive (RF-IR) neurons did not react with CCK antisera; they reacted instead with antisera to Leu-enkephalin and Met-enkephalin-Arg6-Phe7. The RF-IR neurons are, thus, heterogeneous with respect to their contents of immunoreactive peptides. Two of the RF-IR neuron types innervating the adult optic lobes could be traced in their entirety only after following their postembryonic development, because of the complexity of the trajectories of the immunoreactive neuronal process in the adult insect. The majority of the cell bodies of the RF-IR and CCK-IR neurons lie within the optic lobes and are derived from imaginal neuroblasts of the inner and outer optic anlagen. Six of the peptidergic neurons are, however, metamorphosing larval neurons with their cell bodies in the central part of the protocerebrum. The full extent of immunoreactivitiy is not attained in some of the neurons until the late pupal or early adult stage. The larval optic center was also found to be innervated by neurons immuno-reactive with both RFamide and CCK antisera. The cell bodies of these RF-IR/CCK-IR neurons are located near the developing lamina (one on each side). In the 24 h pupa, the cell bodies of these neurons are still immunoreactive, but thereafter they cannot be immunolabeled apparently due to cell death or a change in transmitter phenotype.  相似文献   

13.
The distribution and characterization of dopamine-containing neurons are described in the different ganglia of the central nervous system of Helix on the basis of the distribution of tyrosine hydroxylase immunoreactive (TH-ir) and dopamine immunoreactive (DA-ir) neurons. Both TH-ir and DA-ir cell bodies of small diameter (10–25 m) can be observed in the buccal, cerebral and pedal ganglia, dominantly on their ventral surface, and concentrated in small groups close to the origin of the peripheral nerves. The viscero-parietal-pleural ganglion complex is free of immunoreactive cell bodies but contains a dense fiber system. The largest number of TH-ir and DA-ir neurons can be detected in the pedal, and cerebral ganglia. The average number of TH-ir and DA-ir neurons significantly differs but all the identifiable groups of TH-ir neurons also show DA-immunoreactivity. Therefore, we consider the TH-ir neurons in those groups as being DA-containing neurons. The amounts of DA in the different ganglia assayed by high performance liquid chromatography correspond to the distribution and number of TH-ir and DA-ir neurons in the different ganglia. The axon processes of the labeled small-diameter neurons send thin proximal branches toward the cell body layer but only rarely surround cell bodics, whereas distally they give off numerous branches in the neuropil and then leave the ganglion through the peripheral nerves. In the cerebral ganglia, the analysis of the TH-ir pathways indicates that the largest groups of labeled neurons send their processes through the peripheral nerves in a topographic order. These results furnish morphological evidence that DA-containing neurons of Helix pomatia have both central and peripheral roles in neuronal regulation.  相似文献   

14.
Migration of neurons over long distances occurs during the development of the adult central nervous system of the sphinx moth Manduca sexta, and the turnip moth Agrotis segetum. From each of the suboesophageal and three thoracic ganglia, bilaterally-paired clusters of immature neurons and associated glial cells migrate posteriorly along the interganglionic connectives, to enter the next posterior ganglion. The first sign of migration is observed at the onset of metamorphosis, when posterio-lateral cell clusters gradually separate from the cortex of neuronal cell bodies and enter the connectives. Cell clusters migrate posteriorly along the connective to reach the next ganglion over the first three days (approximately 15%) of pupal development. During migration, each cell cluster is completely enveloped by a single giant glial cell spanning the entire length of the connective between two adjacent ganglia. Intracellular cobalt staining reveals that each migrating neuron has an ovoid cell body and an extremely long leading process which extends as far as the next posterior ganglion; this is not a common morphology for migrating neurons that have been described in vertebrates. Once the cells arrive at the anterior cortex of the next ganglion, they rapidly intermingle with the surrounding neurons and so we were unable to determine the fate of the migrating neurons at their final location.  相似文献   

15.
Summary The development of the sensory neurons of the legs of the blowfly,Phormia regina has been described from the third instar larva to the late pupa using immunohistochemical staining. The leg discs of the third instar larva contain 8 neurons of which 5 come to lie in the fifth tarsomere of the developing leg. Whereas 2 neurons persist at least to the late pupa, the other cells degenerate. The first neurons of gustatory sensilla arise in the fifth tarsomere at about 1.5 h after formation of the puparium. Most of these sensilla, however, appear within a short time period beginning at about 18 h. The femoral chordotonal sensory neurons first appear at the time of formation of the puparium, as a mass of cells situated in the distal femur. During later pupal development 2 groups of these cells come to lie at the femur-trochanter border, where they become the proximal femoral chordotonal organ of the adult; the remaining cells become the distal femoral chordotonal organ. Other scolopidial neurons appear later in development. The nerve pathways of the late pupal leg are established either by the axons of the cells that are present in the larval leg disc or by new outgrowing processes of sensory neurons. In the tibia, the initial direction of new outgrowth differs in different regions of the segment: proximal tibial neurons grow distally, while distal tibial neurons grow initially proximally.  相似文献   

16.
The pyrokinin/pheromone-biosynthesis-activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including the stimulation of pheromone biosynthesis in female moths, muscle contraction, induction of embryonic diapause, melanization, acceleration of puparium formation, and termination of pupal diapause. We have used immunocytochemical techniques to demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of the fire ant, Solenopsis invicta. Polyclonal antisera against the C-terminal end of PBAN have revealed the location of the peptide-producing cell bodies and axons in the central nervous system. Immunoreactive material is detectable in at least three groups of neurons in the subesophageal ganglion and corpora cardiaca of all adult sexual forms. The ventral nerve cord of adults consists of two segmented thoracic ganglia and four segmented abdominal ganglia. Two immunoreactive pairs of neurons are present in the thoracic ganglia, and three neuron pairs in each of the first three abdominal ganglia. The terminal abdominal ganglion has no immunoreactive neurons. PBAN immunoreactive material found in abdominal neurons appears to be projected to perisympathetic organs connected to the abdominal ganglia. These results indicate that the fire ant nervous system contains pyrokinin/PBAN-like peptides, and that these peptides are released into the hemolymph. In support of our immunocytochemical results, significant pheromonotropic activity is found in fire ant brain-subesophageal ganglion extracts from all adult fire ant forms (queens, female and male alates, and workers) when extracts are injected into decapitated females of Helicoverpa zea. This is the first demonstration of the presence of pyrokinin/PBAN-like peptides and pheromonotropic activity in an ant species. This research was supported in part by a US-Israel Binational Science Foundation Grant (no. 2003367).  相似文献   

17.
Summary The postembryonic development of the antennal lobes of Periplaneta americana L. was examined with light- and electron-microscopical methods. There is no difference in the number of glomeruli and neurons in the antennal lobes of larval and adult animals. At hatching, the first larva already possesses the adult number of approximately 125 glomeruli and 500 to 560 deutocerebral neurons in the dorsolateral cell group of each antennal lobe. During postembryonic development the volume of the deutocerebral neurons increases three- to fourfold. The glomeruli of the first larva have about 7 % of the volume of the corresponding adult glomeruli. Since number, pattern, and size ratio of glomeruli (with the exception of the macroglomerulus) are constant in all larval stages and adult animals, it is possible to identify individual glomeruli. During the whole postembryonic development the ordinary glomeruli show a continuous volume increase, which parallels the increase in antennal sensory input. The macroglomerulus develops by way of special growth of two to four neuropil units, but not before the last three to four larval stages and only in males. Its growth precedes the formation of antennal pheromone receptors during the final molt; these receptors are known to project into the macroglomerulus. The development of the macroglomerulus in the last larval stages of the male may be caused by a genetically fixed growth program of specific deutocerebral neurons.Supported by the Deutsche Forschungsgemeinschaft (Scha 291/1)  相似文献   

18.
We have investigated the distribution of tyrosine-hydroxylase-like immunoreactivity in the cerebral ganglia of the American cockroach, Periplaneta americana. Groups of tyrosine-hydroxylase-immunoreactive cell bodies occur in various parts of the three regions of the cerebral ganglia. In the protocerebrum, single large neurons or small groups of neurons are located in the lateral neuropil, adjacent to the calyces, and in the dorsal portion of the pars intercerebralis. Small scattered cell bodies are found in the outer layers of the optic lobe, and clusters of larger cell bodies can be found in the deutocerebrum, medial and lateral to the antennal glomeruli. Thick bundles of tyrosine-hydroxylase-positive nerve fibers traverse the neuropil in the proto- and deutocerebrum and innervate the glomerular and the nonglomerular neuropil with fine varicose terminals. Dense terminal patterns are present in the medulla and lobula of the optic lobe, the pars intercerebralis, the medial tritocerebrum, and the area surrounding the antennal glomeruli, the central body and the mushroom bodies. The pattern of tyrosine-hydroxylase-like immunoreactivity is similar to that previously described for catecholaminergic neurons, but it is distinctly different from the distribution of histaminergic and serotonergic neurons.  相似文献   

19.
Loss of serotonergic and dopaminergic neurons may have serious implications for normal brain function. Drosophila models of neurodegenerative diseases utilize the short life-span and simple anatomy of the fly to characterize the molecular and genetic processes characteristic of each dysfunctional state. In fly embryonic and larval ventral nerve cords, serotonergic and dopaminergic neurons are positioned in a stereotypic pattern that is reorganized during metamorphosis. In this study, we examine the adult pattern of serotonergic and dopaminergic neurons within the adult fly ventral nerve cord. We find that the number of cells lost following metamorphosis is highly variable. Changes in cell number attributable to age are therefore likely to be highly masked by developmental variation. The source of this variation is probably apoptosis-based cell loss during pupal development.This work was supported by a Keck Scholars Award and NINDS R29 37322 to BGC and by the University of Virginia Medical Scientist Training Program to PAS.  相似文献   

20.
Enzyme histochemistry and immunocytochemistry were used to determine the distribution of neurons in the snail Helix aspersa which exhibited nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity and/or immunoreactivity to nitric oxide synthase (NOS). NADPH diaphorase-positive cells and fibres were distributed extensively throughout the central and peripheral nervous system. NADPH diaphorase-positive fibres were present in all neuropil regions of the central and peripheral ganglia, in the major interganglionic connectives and in peripheral nerve roots. NADPH diaphorase-positive cell bodies were found consistently in the eyes, the lips, the tentacular ganglia and the procerebral lobes of the cerebral ganglia; staining of cell bodies elsewhere in the nervous system was capricious. The distribution of NOS-like immunoreactivity differed markedly from that of NADPH diaphorase activity. Small clusters of cells which exhibited NOS-like immunoreactivity were present in the cerebral and pedal ganglia; fibres which exhibited NOS-like immunoreactivity were present in restricted regions of the neuropil of the central ganglia. The disjunct distributions of NADPH diaphorase activity and NOS-like immunoreactivity in the neurvous system of Helix suggest that the properties of neuronal NOS in molluscs may differ sigificantly from those described previously for vertebrate animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号