首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Abstract The rates of uptake of nitrate-N per unit length; surface area and volume of root were measured in solution depletion experiments conducted in a root laboratory, using intact roots of two 4.5-year-old apple trees (Discovery/M.9 and Worcester Pearmain/M.9) at two different depths in the soil profile. In Discovery/M.9, NO3? uptake rate per unit root was constant over the 20-200 mmol m?3 range of solution concentration. In Worcester/M.9, the uptake rate per unit root over the 200-150 mmol m?3 range (corresponding to a ‘lag’ phase) was lower than that over 150-20 mmol m?3. The uptake rates after the lag phase at depths of 46 and 104 cm were ca. 1.3 and 5.0 times greater than those in Discovery/M.9 at the 46 and 110 cm depths, respectively. The concentration below which net uptake was zero was ca. 1 mmolm?3. In Discovery/M.9, the uptake rate per unit root at the 46cm depth was about 2.8 times that at 110 cm whereas in Worcester/M.9, the uptake rates at 46cm depth were about 1.8 and 1.4 times lower than those at 104cm over the solution concentration ranges 200-150 and 150-20 mmol m?3, respectively. Only small differences were observed in uptake rates per unit root between 1400-1700 h, 2400-0400 h, and 0700-1100 h. For successive 5°C-increments in root temperature between 5 and 25° C, the nitrate uptake rate per unit root increased by 130, 10, 30 and 5%, respectively. A major change in the activation energy for nitrate uptake was observed at a transition temperature located between 5°and 10°C.  相似文献   

2.
3.
Schjørring, J. K. and Jensén, P. 1984. Phosphorus nutrition of barley, buckwheat and rape seedlings. I. Influence of seed-borne P and external P levels on growth, P content and 32P/31P-fractionation in shoots and roots. Seedlings of barly (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus ev. Line) were grown at 8 or 10 different external P levels in the range 0-2000 μM. Apart from P, the nutrient solutions were complete. In some experiments with barley and rape, 32P-labelled phosphate was used. Root fresh weights of buckwheat and rape decreased when the external P supply exceeded the level required for maximal root development. In all three species, the roots constituted a decreasing proportion of the total plant fresh weight as the external P level increased. The shoot/root fresh weight ratio increased linearly with the P concentration of the roots. The ratio between the P concentration in shoots and roots increased with the P status of the seedlings grown at low to intermediate external P levels, but decreased at higher P levels. The proportion of total seedling-P held in roots consequently reached a minimum value and thereafter increased as the P status of the seedlings increased. This indicates that some control mechanism counteracted the accumulation of harmful P levels in the shoots. 32P-Phosphate uptake by seedlings of barley and rape grown in solutions with 2 μM P overestimated the actual net phosphorus uptake by a factor of 6 to 7, indicating a marked fractionation of 32P and 31P. For seedlings grown in solutions with 25 μM P (barley) or 50 μM (rape) no fractionation occurred. The relative excess of 32P in high P seedlings accumulated in the roots. It is suggested that the fracionation was caused by efflux of low specific activity phosphorus and by diffusion of free phosphate ions across the plasmalemma of the root cells in response to a difference in the concentration gradient between the two P isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号