首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于生态需水保障的农业生态补偿标准   总被引:1,自引:0,他引:1  
庞爱萍  孙涛 《生态学报》2012,32(8):2550-2560
面向流域农业需水和生态需水间的矛盾问题和协调发展的要求,提出了基于生态需水保障的农业生态补偿标准计算方法。其中考虑农业用水定额计算基于生态需水保障的农业用水短缺,引入水分生产函数模型建立保障生态需水量产生的农业用水短缺与产量损失间的关系,根据不同季节作物产量响应系数的变化,定量确定具有时间和等级差异性的农业生态补偿标准。以保障黄河口生态需水引起的山东引黄灌区农业损失补偿标准分析为实例,计算了冬小麦和夏玉米种植户不同等级的生态补偿标准。结论认为,农业生态补偿标准需根据不同的来水过程及生态需水等级确定,面积稳定和保障功能显著的粮食作物应作为补偿标准计算的依据。  相似文献   

2.
Rockström  J.  de Rouw  A. 《Plant and Soil》1997,195(2):311-327
In the Sahel, short periods of intra-seasonal drought, caused by unfavourable rainfall distribution, often have stronger effect on crop growth than fluctuations in annual rainfall. The interactive effects of nutrient deficiency and water shortage (during panicle initiation, flowering and grain filling) on yield and yield components of pearl millet (Pennisetum glaucum (L.) R. Br.), were studied on-farm along a cultivated slope, during three years with close to average annual rainfall. Grain yield was correlated to plant nutrient availability but not to annual rainfall, which was explained by the capacity of the crop to compensate for damage caused by water shortage during early growth phases. The performance of each yield component was positively correlated to cumulative rainfall during the growth phase when it was formed. Leaf area index (LAI) was very low, and leaf development followed rainfall distribution. Water and nutrients interacted during each growth phase for all fertility levels. Fertilised millet suffered less during water shortage at panicle initiation and at grain filling compared to non-fertilised millet. However, compared to favourable soil water conditions yield components were systematically lower for all treatments, indicating the synergistic effect of water and nutrients. The results suggest that water availability plays an exclusive role during flowering. Grain number dropped significantly due to water shortage and was similar for all treatments. Despite extremely high spatial variability in yields (varying with a factor 46 within the field), a significant slope effect was observed, of progressively increasing yields when moving downslope. Spatial redistribution of surface runoff resulting in higher soil water availability on lower slope positions, contributed to the yield gradient, which was reinforced for fertilised millet. For each drought period, yield components suffered systematically more upslope than downslope. This slope effect was smoothed out for manured millet, which indicates that manure increased soil infiltrability on crusted zones upslope. The slope interaction observed here – indicating that downslope (i) the risk for crop failure during droughts is lower and (ii) the response to fertilisers is greater – suggests that farmers can benefit relatively more from fertilisers applied in lower parts of the watershed. Taking advantage of spatial soil and water variability is an interesting system of low technology precision farming, which combined with water harvesting systems to master droughts, can constitute options for increased crop yields in the Sahel.  相似文献   

3.
Mediterranean environments are characterised by cool wet winters and hot dry summers. While native vegetation in Mediterranean-climatic zones usually comprises a mixture of perennial and annual plants, agricultural development in the Mediterranean-climatic region of Australia has led to the clearing of the perennial vegetation and its replacement with annual crops and pastures. In the Mediterranean environments of southern Australia this has led to secondary (dryland) salinisation. In order to slow land degradation, perennial trees and pasture species are being reintroduced to increase the productivity of the saline areas. The annual crops and pastures that form the backbone of dryland farming systems in the Mediterranean-climatic zone of Australia are grown during the cool wet winter months on incoming rainfall and mature during spring and early summer as temperatures and rates of evaporation rise and rainfall decreases. Thus, crop and pasture growth is usually curtailed by terminal drought. Where available, supplementary irrigation in spring can lead to significant increases in yield and water use efficiency. In order to sustain production of annual crops in Mediterranean environments, both agronomic and genetic options have been employed. An analysis of the yield increases of wheat in Mediterranean-climatic regions shows that there has generally been an increase in the yields over the past decades, albeit at a lower rate than in more temperate regions. Approximately half of this increase can be attributed to agronomic improvements and half to genetic improvements. The agronomic improvements that have been utilised to sustain the increased yields include earlier planting to more closely match crop growth to rainfall distribution, use of fertilisers to increase early growth, minimum tillage to enable earlier planting and increase plant transpiration at the expense of soil evaporation, rotations to reduce weed control and disease incidence, and use of herbicides, insecticides and fungicides to reduce losses from weeds, insects and disease. Genetic improvements include changing the phenological development to better match the rainfall, increased early vigour, deeper rooting, osmotic adjustment, increased transpiration efficiency and improved assimilate storage and remobilisation. Mediterranean environments that are subjected annually to terminal drought can be both environmentally and economically sustainable, but to maximise plant water use efficiency while maintaining crop productivity requires an understanding of the interaction between genotypes, environment and management.  相似文献   

4.
Bioenergy crop production has the potential to protect marginal crop lands that generate high surface runoff and produce poor crop yields. Long-term evaluation of the impacts of such land use change on hydrologic fluxes and biofuel production potential is necessary before adopting such strategies on a large scale. In this study, the hydrologic impacts of replacing cotton (Gossypium hirsutum L.) on marginal lands in an intensive agricultural watershed in the Texas High Plains with Alamo switchgrass (Panicum virgatum L.) as a bioenergy crop were evaluated using the Agricultural Policy/Environmental eXtender (APEX) model. The surface runoff to cotton yield ratio was used as a criterion to identify marginal cotton subareas (homogenous spatial units delineated by APEX) in the study watershed, and three replacement scenarios (low (9 %), medium (33 %), and high (57 %) extents of cotton acreage replaced by switchgrass) were implemented in the scenario analysis. The average (1994–2009) annual surface runoff decreased by about 84 and 66 %, and the percolation increased by 106 and 57 % in the irrigated and dryland subareas, respectively, when cotton was replaced by switchgrass under the high replacement scenario. Spatial analysis showed that switchgrass was a feasible bioenergy crop for replacing cotton, especially in the western part of the study watershed, due to its higher water use efficiency and better water conservation effects compared to cotton. It is estimated that 193 and 381 million liters of ethanol could be produced from the dryland and irrigated subareas of the study watershed, respectively, under the high replacement scenario.  相似文献   

5.
Carbon sequestration programs, including afforestation and reforestation, are gaining attention globally and will alter many ecosystem processes, including water yield. Some previous analyses have addressed deforestation and water yield, while the effects of afforestation on water yield have been considered for some regions. However, to our knowledge no systematic global analysis of the effects of afforestation on water yield has been undertaken. To assess and predict these effects globally, we analyzed 26 catchment data sets with 504 observations, including annual runoff and low flow. We examined changes in the context of several variables, including original vegetation type, plantation species, plantation age, and mean annual precipitation (MAP). All of these variables should be useful for understanding and modeling the effects of afforestation on water yield. We found that annual runoff was reduced on average by 44% (±3%) and 31% (±2%) when grasslands and shrublands were afforested, respectively. Eucalypts had a larger impact than other tree species in afforested grasslands (P=0.002), reducing runoff (90) by 75% (±10%), compared with a 40% (±3%) average decrease with pines. Runoff losses increased significantly with plantation age for at least 20 years after planting, whether expressed as absolute changes (mm) or as a proportion of predicted runoff (%) (P<0.001). For grasslands, absolute reductions in annual runoff were greatest at wetter sites, but proportional reductions were significantly larger in drier sites (P<0.01 and P<0.001, respectively). Afforestation effects on low flow were similar to those on total annual flow, but proportional reductions were even larger for low flow (P<0.001). These results clearly demonstrate that reductions in runoff can be expected following afforestation of grasslands and shrublands and may be most severe in drier regions. Our results suggest that, in a region where natural runoff is less than 10% of MAP, afforestation should result in a complete loss of runoff; where natural runoff is 30% of precipitation, it will likely be cut by half or more when trees are planted. The possibility that afforestation could cause or intensify water shortages in many locations is a tradeoff that should be explicitly addressed in carbon sequestration programs.  相似文献   

6.
The growing interest in the use of alternative biomass products for fuel production requires a thorough understanding of the environmental impacts associated with the production of these bioenergy crops. Corn silage is a potential bioenergy feedstock; however, water quality implications for its utilization as a biofeedstock are not understood. The objective of this work was to evaluate water quality impacts associated with corn silage production. The GLEAMS-NAPRA model was used to quantify runoff, percolation, erosion, nitrate-nitrogen, total phosphorus, and pesticide losses attributed to the production of corn silage with and without winter cover crops for two tillage options (conventional tillage and no till) on three Indiana soils. Results revealed that corn silage would generate greater annual surface runoff (1 to 6 mm) and percolation (1 to 20 mm) compared with corn grain and grain plus stover cropping systems. Silage/winter cereal rye cover crop reduced annual surface runoff and percolation and was strongly influenced by increases in evapotranspiration, when compared with continuous silage production. Silage managed with winter cereal rye cover crop influenced water quality by reducing annual nitrate losses with runoff from a low of 14 % to a high of 27 %, with relatively no effect because of tillage management. No-till practice on silage system produced significantly greater phosphorus losses (7.46 to 18.07 kg/ha) in comparison to silage/cereal rye, corn grain, and grain plus stover harvest (p?<?0.05). For every 1,000 l of ethanol produced from corn silage, erosion losses ranged from 0.07 to 0.95 t/ha for conventional tillage practices and from 0.06 to 0.83 t/ha for no-till practices. The feasibility of cropping systems such as corn silage/cereal rye could contribute to large-scale biomass production but should be further investigated.  相似文献   

7.
黄土高原地区春小麦对有限灌溉的反应及其生理生态基础   总被引:3,自引:1,他引:2  
鄢Xun  王俊 《西北植物学报》2001,21(4):791-795
从对黄土高原地区有限灌溉条件下作物生理生态反应的众多研究中得出:(1)水分轻度亏缺时,作物可通过根信号物质ABA调节叶片的气孔导度。非水力根信号作用太强,可因降低光合作用而减少干物质生产和影响干物质分配模式而影响产量和水分利用效率,故削弱非水力根信号的作用将有利于提高产量。(2)浅层根系占根系总量比值越高,对干旱越敏感,表现为根信号能力增强;深层根系所占比例越高,越有利于土壤深层水分利用,并可削弱根信号,同理,给土壤中下层补水或采用播种前灌溉,可因为减少了无效蒸发,且削弱根信号而提高水分利用率。(3)本地区有限灌溉的最佳时期由于降水变率较高而变得较为复杂,不同降水年型,最佳灌溉时期差异很大,对有限灌溉进行科学管理还需要做更多的研究工作。  相似文献   

8.
Conservation tillage (CT) can be beneficial for soil, water and soil organic matter conservation in Mediterranean areas that are prone to soil erosion and where water availability for crops is the main factor for sustainability. CT is the best option to protect the soil from erosion, improve infiltration, reduce soil evaporation and so conserve rainwater to increase crop water use (WU) and also water use efficiency (WUE). While CT can play an important role in reaching the stability and sustainability of these agricultural systems, performance depends upon the choice and adoption of an appropriate soil management (tillage) system. In rainfed areas of the Ebro Valley, winter cereals are the main crop sown. This paper presents the results of 15 years of research in different soil and climatic conditions of the area of CT on water conservation, WU and WUE. Long‐term experiments, comparing different tillage systems, were established in 1987, 1990 and 1992, at three locations in the Ebro Valley, chosen according to their degree of aridity (Selvanera, Agramunt and El Canós). Results reveal that CT was most effective in increasing yield under the driest conditions at Agramunt (10–15%), still effective with a smaller advantage under slightly wetter conditions at El Canós (5–10%) but ineffective at Selvanera, the wettest site. CT only increased WU in some years at Agramunt and never at the other two sites. The benefits of CT to both increased yield at Agramunt and El Canós were determined by improved WUE arising from changes in the pattern of WU before and after anthesis.  相似文献   

9.
Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large‐scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field‐to‐field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid‐field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log‐scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Göttingen, and 2015–2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11%–38% in comparison with mid‐field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95% of mid‐field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in‐field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.  相似文献   

10.
Eastham  J.  Gregory  P.J. 《Plant and Soil》2000,221(2):239-251
The influence of time of sowing and sowing density on evapotranspiration and drainage loss beneath wheat (Triticum aestivum cv. Spear) and lupin (Lupinus angustifolius cv. Gungurru) crops grown on a layered soil was investigated for three seasons in a Mediterranean climate in Western Australia. The aim of the study was to investigate whether managing crops to maximise their canopy growth would increase their water use and minimise groundwater recharge contributing to dryland salinity. A soil water balance approach was used to estimate evapotranspiration, with changes in soil water content measured with a neutron water meter. The study was carried out on a layered soil typical of agricultural soils in the region with variable depth to clay (0.22–0.38 m) and a marked contrast in hydraulic properties between the topsoil and subsoil. As a result of the low permeability subsoil, a perched water table occurred in the sandy topsoil in each of the three seasons under study during winter when rainfall was high and potential evaporation low. Perched water tables persisted for 2–3 months, with hydraulic gradients consistently downward causing drainage losses to occur. Although crop management had a large influence on shoot and root development, evapotranspiration from the different treatments was generally similar. Drainage losses were not influenced by either crop type, time of sowing or sowing density, because potential evaporation and hence evapotranspiration was low during the period when drainage losses occurred. The total drainage loss measured in each season was different, with losses ranging from 20.1 to 22.2 mm in 1990, from 40.4 to 46.7 mm in 1991 and from 49.4 to 66.6 mm in 1992. The increase in drainage loss from 1990 to 1992 was a result of progressively more seasonal rainfall in 1990, 1991 and 1992. It was concluded that there was little scope to increase water use and decrease deep drainage through crop management for sites with climatic conditions where winter rainfall exceeds potential evaporation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Eight tonnes ha–1 of stubble were used to mulch spring wheat (Triticum aestivum) on a fine textured soil with the aim of controlling both transpiration and soil evaporation during the wet pre-anthesis phase to increase moisture supply during grain filling in the eastern wheatbelt of Western Australia. Mulching reduced leaf area per plant by reducing the culm number; consequently the green area index was reduced. Reduced culm number was associated with low soil temperature which at 50 mm depth averaged 7°C lower under the mulched crop relative to the control crop in mid-season. The smaller canopies of the mulched crop used 15 mm less water than those of the control before anthesis; this difference in water-use was due equally to reduced transpiration and soil evaporation. However, the mulched crop was unable to increase ET during grain filling, a response associated with the persistence of low soil temperature for most of the growth period. Hence, total ET for the season was significantly lower (18 mm) under the mulched crop than the control crop. At harvest, mulching did not have significant effects on total above-ground dry matter and grain yields, but it increased water use efficiency for grain yield by 18%, grain weight by almost 17% and available moisture in both uncropped and cropped plots by an average of 43 mm.To determine whether there was any residual effects of soil treatment on moisture storage during the summer fallow period, soil moisture was monitored both in cropped plots and uncropped plots, that were either mulched or unmulched during the growing season, from harvest in October 1988 until next planting in June 1989. Available moisture at next planting was correlated with moisture storage at harvest despite the differences in run-off, soil evaporation and fallowing efficiency (increase in moisture storage as a percentage of rainfall) between treatments during fallowing. Therefore, the mulched treatments had more moisture available (30 mm), mostly as a result of less water use during cropping in the previous growing season, than the unmulched treatment.The study shows that mulching may be used to restrain both transpiration and soil evaporation early in the season to increase availability of soil moisture during grain filling. Secondly, mulching during the previous growing season had little effect on soil moisture during the summer fallow period, however, the moisture saved by mulching during cropping was conserved for the following season. These results indicate the importance of evaluating mulching of winter crops in terms of crop yield in the subsequent growing season as well as in the current season in which the soil was treated.Abbreviations D through drainage - DAS days after sowing of the crop on 31 May 1988 - DM dry matter produced in the above-ground portion of the crop (kg ha–1) - E0 evaporation from Class A pan (mm) - Es evaporation from uncropped soil (mm) - Esc evaporation from soil beneath the wheat canopy (mm) - ET evapotranspiration (mm) - FE fallowing efficiency (gain in soil moisture storage/rainfall) - GAI green area index (area of green vegetation per unit land area) - GWUE water-use efficiency for grain production (grain yield/total ET, kg ha–1mm–1) - K extinction coefficient (see equation 1) - RO run-off of moisture from soil surface during/following rainfall (mm) - SM available soil moisture (mm) at harvest (SMh) or at planting (SMp) - WUE water-use efficiency for total above-ground dry matter yield (see GWUE)  相似文献   

12.
Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0–200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m3. Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE.  相似文献   

13.
Water deficit is a serious environmental stress and the major constraint to rice productivity. Losses in rice yield due to water shortage probably exceed losses from all other causes combined and the extent of the yield loss depends on both the severity and duration of the water stress. Drought affects rice at morphological, physiological, and molecular levels such as delayed flowering, reduced dry matter accumulation and partitioning, and decreased photosynthetic capacity as a result of stomatal closure, metabolic limitations, and oxidative damage to chloroplasts. Small-statured rice plants with reduced leaf area and short growth duration are better able to tolerate drought stress, although the mechanisms are not yet fully understood. Increased water uptake by developing larger and deeper root systems, and the accumulation of osmolytes and osmoprotectants are other important mechanisms for drought resistance. Drought resistance in rice has been improved by using plant growth regulators and osmoprotectants. In addition, several enzymes have been found that act as antioxidants. Silicon has also improved drought resistance in rice by silicification of the root endodermis and improving water uptake. Seed priming improves germination and crop stand establishment under drought. Rice plants expressing HVA1, LEA proteins, MAP kinase, DREB and endo-1, 3-glucanase are better able to withstand drought stress. Polyamines and several enzymes act as antioxidants and reduce adverse effects of drought stress in rice. Drought resistance can be managed by developing and selecting drought-tolerant genotypes. Rice breeding and screening may be based on growth duration, root system, photosynthesis traits, stomatal frequency, specific leaf weight, leaf water potential, and yield in target environments. This review discusses recent developments in integrated approaches, such as genetics, breeding and resource management to increase rice yield and reduce water demand for rice production.  相似文献   

14.
间歇灌溉对北方水稻生理生态需水的影响   总被引:14,自引:1,他引:13  
通过田间试验研究了间歇灌溉(IT)条件下北方水稻生理生态需水变化特性.试验于2002年在中国科学院沈阳生态实验站水田试验区进行.分别采用非称重式蒸渗仪和小型蒸渗仪对间歇灌溉和淹灌(CSF)条件下的稻田蒸散量和棵间蒸发量进行了测定.结果表明。间歇灌溉条件下的水稻蒸腾量与淹灌相比没有达到显著差异,而稻田棵间蒸发量和渗漏量则分别减少了16%和24%。水分利用效率提高了10%,在显著减少用水量的情况下并未对水稻产量造成不良影响.针对本地区土质而言,与淹灌相比,尽管间歇灌溉可以有效地减少稻田用水量,但仍有近60%的稻田用水通过渗漏损失掉.为此,本文提出着眼于提高稻田水分利用效率、降低渗漏量和土壤水蒸发量的相应对策.  相似文献   

15.
Extreme weather conditions with negative impacts can strongly affect agricultural production. In the Danjiangkou reservoir area, citrus yields were greatly influenced by cold weather conditions and drought stress in 2011. Soil straw mulching (SM) practices have a major effect on soil water and thermal regimes. A two-year field experiment was conducted to evaluate whether the SM practices can help achieve favorable citrus fruit yields. Results showed that the annual total runoff was significantly (P<0.05) reduced with SM as compared to the control (CK). Correspondingly, mean soil water storage in the top 100 cm of the soil profile was increased in the SM as compared to the CK treatment. However, this result was significant only in the dry season (Jan to Mar), and not in the wet season (Jul to Sep) for both years. Interestingly, the SM treatment did not significantly increase citrus fruit yield in 2010 but did so in 2011, when the citrus crop was completely destroyed (zero fruit yield) in the CK treatment plot due to extremely low temperatures during the citrus overwintering stage. The mulch probably acted as an insulator, resulting in smaller fluctuations in soil temperature in the SM than in the CK treatment. The results suggested that the small effects on soil water and temperature changes created by surface mulch had limited impact on citrus fruit yield in a normal year (e.g., in 2010). However, SM practices can positively impact citrus fruit yield in extreme weather conditions.  相似文献   

16.
In undulating or sloping land, water distribution in soil has a major influence on crop yield through stresses on vegetation. It is difficult to predict the impacts, however, so a crop model is required to simulate topography-related horizontal redistribution of summer precipitation and its effect on yield. This study uses a potato model (POMOD), operating with the concept of meteorologically possible yield (MPY). It was supplemented to assess precipitation redistribution by runoff on a sloping surface. Slope incline, soil moisture and rainfall intensity were environmental parameters, with rainfall intensities replaced empirically with more convenient daily rainfall sums. Differences in the water balance, as compared to a non-sloping level surface, were computed for three different parts of a notional slope 3°. Modelled differences from long-term meteorological data allowed computation of comparative long-term series of MPY in two climatologically different localities in Estonia. These were the generally moister Tallinn and the frequently dry Kuressaare regions. The locations responded differently, but there was a significant influence in both of slope on potato yield. In the frequently dry Kuressaare, yield was limited by water deficiency, as was characterized by the change in MPY through slope. However, the moister Tallinn had the worst growing conditions at the foothill due to excess water. Tallinn had the greatest topography-related differences, leading to the conclusion that excess water causes more loss in potato yield than drought in Estonia. Events of extreme rainfall drive these losses.  相似文献   

17.
Climate change is predicted to hamper crop production due to precipitation deficits and warmer temperatures inducing both water stress and increasing herbivory due to more abundant insect pests. Consequently, crop yields will be impacted simultaneously by abiotic and biotic stressors. Extensive yield losses due to such climate change stressors might, however, be mitigated by ecosystem services such as insect pollination. We examined the single and combined effects of water stress, insect herbivory and insect pollination on faba bean yield components and above‐ and belowground plant biomass under realistic field conditions. We used rainout shelters to simulate a scenario in line with climate change projections, with adequate water supply at sowing followed by a long period without precipitation. This induced a gradually increasing water stress, culminating around crop flowering and yield formation. We found that gradually increasing water stress combined with insect herbivory by aphids interactively shaped yield in faba beans. Individually, aphid herbivory reduced yield by 79% and water stress reduced yield by 52%. However, the combined effect of water stress and aphid herbivory reduced yield less (84%) than the sum of the individual stressor effects. In contrast, insect pollination increased yield by 68% independently of water availability and insect herbivory. Our results suggest that yield losses can be greatly reduced when both water stress and insect herbivory are reduced simultaneously. In contrast, reducing only one stressor has negligible benefits on yield as long as the crop is suffering from the other stressor. We call for further exploration of interactions among ecosystem services and biotic and abiotic stressors that simulate realistic conditions under climate change.  相似文献   

18.
采用随机区组试验,研究了四川紫色丘陵区坡耕地不同耕作和覆盖方式对玉米生育期中水土及养分流失的影响。结果表明:秸秆覆盖对减少水土流失和增加玉米产量的效果均优于地膜覆盖。秸秆覆盖能显著减少地表径流(73.9%—86.2%),但增加了壤中流(15.4%—156.4%);使径流总量降低32.5%—66.6%,并极显著降低土壤侵蚀总量达96.4%—98.1%。地膜覆盖虽能在一定程度上减少壤中流和径流总深,但差异未达到显著水平。土壤N平均损失量达37.4kg/hm2,其中70.1%经由壤中流流失。秸秆覆盖虽然增加了一定的壤中流N损失,但能减少N流失总量达12.8%—65.1%。土壤P素损失量相对较小,仅为9.32kg/hm2,并主要随侵蚀泥沙迁移,占流失总量的92.1%。土壤K损失量达183.3kg/hm2,其流失载体也主要是侵蚀泥沙,占96.5%。因此,两种覆盖方式均能显著控制土壤P和K的损失。无论是秸秆还是地膜覆盖,与顺坡垄作相比,横坡垄作均能减少地表径流、地下径流、土壤侵蚀量及氮、磷、钾素总流失量,同时还能提高玉米产量。从简便、增产和防治面源污染的角度考虑,紫色土区坡耕地最适宜的种植方式为平作+秸秆覆盖。  相似文献   

19.
赵丽雯  赵文智  吉喜斌 《生态学报》2015,35(4):1114-1123
利用中国生态系统研究网络临泽内陆河流域研究站绿洲农田2009年小气候、湍流交换、土壤蒸发和叶片气孔导度等综合观测试验数据,应用Shuttleworth-Wallace(S-W)双源模型以半小时为步长估算了绿洲农田玉米生长季实际蒸散量,并利用涡动相关与微型蒸渗仪实测数据对田间蒸散发量和棵间土壤蒸发量计算结果进行了检验。结果表明:S-W模型较好地估算研究区的蒸散量,并能有效区分农田作物蒸腾和土壤蒸发;全生育期玉米共耗水640 mm,其中作物蒸腾累积量为467 mm,土壤蒸发累积量为173 mm,分别占总量的72.9%和27.1%;日时间尺度上,作物蒸腾和土壤蒸发分别在0—6.3 mm/d和0—4.3 mm/d之间变化,其日平均分别为2.9和1.0 mm/d;田间供水充足,作物蒸腾与土壤蒸发比值明显受作物生长过程影响,播种—出苗期、出苗—拔节期、拔节—抽雄期、抽雄—灌浆期、灌浆—成熟期,其比值分别为0.04、0.8、7.0、5.2和1.4,不同阶段的比值差异主要受叶面积指数影响。  相似文献   

20.
Summary Soil characteristics in the crop root zone are critical to soil water and nutrient availability to rainfed crops and determine crop production in coarse textured soils. A four-year field study was conducted in the foot-hills of North Himalayas near Chandigarh (India) on a coarse textured soil (Gravelly udic ustocrepts) to evaluate the effect of varying soil profile gravel concentration on the yield of rainfed crops of Taramira (Eruca sativa Mill.) in winter followed by maize (Zea mays L.), sorghum (Sorghum vulgare Pers.), cowpea (Vigna unguiculata L.) and sesamum (Sesamum indicum L.) in summer. Taramira gave a mean grain yield of 683, 410 and 275 kg ha–1 at gravel concentration (GC) of 18, 28 and 40 percent by volume in the surface one metre soil depth. The grain and forage yield of summer crops decreased with the increasing GC. The gross monetary returns decreased in the order: Sorghum fodder, cowpea, sesamum and maize. The dilution of soil mass with increasing GC and corresponding decrease in nutrient and water holding capacity of the soil appears to have depressed the crop yields. The results indicated that the legume which can also conserve rainwater with dense canopy like cowpea or crops having vigorous fibrous root system and are relatively drought tolerant like sorghum may provide better economic returns in light textured soil containing gravel upto 40 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号