首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of C-terminal alpha-amidated peptides from their corresponding C-terminal glycine-extended precursors is catalyzed by peptidylglycine alpha-amidating enzyme (alpha-AE) in a reaction that requires copper, ascorbate, and molecular oxygen. Using bifunctional type A rat alpha-AE, we have shown that O2 is the source of the alpha-carbonyl oxygen of pyruvate produced during the amidation of dansyl-Tyr-Val-[alpha-13C]-D-Ala, as demonstrated by the 18O isotopic shift in the 13C NMR spectrum of [alpha-13C]lactate generated from [alpha-13C]pyruvate in the presence of lactate dehydrogenase and NADH. In addition, one-to-one stoichiometries have been determined for glyoxylate formed/dansyl-Tyr-Val-Gly consumed, pyruvate formed/dansyl-Tyr-Val-D-Ala consumed, dansyl-Tyr-Val-NH2 formed/ascorbate oxidized, and dansyl-Tyr-Val-NH2 formed/O2 consumed. Quantitative coupling of NADH oxidation to dansyl-Tyr-Val-NH2 production using Neurospora crassa semidehydroascorbate reductase showed that two one-electron reductions by ascorbate occurred per alpha-AE turnover. The stoichiometry of approximately 1.0 dansyl-Tyr-Val-NH2 produced/ascorbate oxidized observed in the absence of a semidehydroascorbate trap resulted from the disproportionation of two semidehydroascorbate molecules to ascorbate and dehydroascorbate.  相似文献   

2.
王桂玲  黄东阳 《遗传学报》2004,31(4):403-410
从牛的肝脏中快速抽提总RNA,根据GenBank已发表NADP(H)-依赖的视黄醇脱氢酶基因(NRDR)的cDNA序列,设计并合成特异引物,利用cDNA末端快速扩增(RACE)方法和反转录-聚合酶链式反应(RT-PCR),得到牛肝内的NRDR cDNA的全长序列。经测序证实,牛肝NRDR的全长cDNA序列为1266bp,其开放读码框架在24~806bp,编码260个氨基酸(GenBank登录号:AF487454)。根据NRDR基因推导出的氨基酸序列与人、鼠、兔有高度同源性,并含有SDR超家族成员的两个高度保守的模序,在其C-端含有过氧化物酶体的靶向序列为SHL。结果表明,牛的NRDR应属于过氧化物酶体内SDR超家族成员并在维甲酸合成的限速步骤起作用的酶,也为维甲酸合成的传统通路提供一个补充。  相似文献   

3.
Plasma membrane fractions from rat liver isolated by different methods contain NADH- ferricyanide reductase and NADH-semidehydroascorbate reductase activities which are too high to be due to contamination by mitochondria or microsomes. Both enzymes are inhibited by insulin in a concentration range of 30 to 70 μU insulin/ml down to 20% residual activity. While ferricyanide reductase returns to near normal activity, semidehydroascorbate reductase inhibition persists at higher insulin concentrations. Despite variations in basal enzyme activities, degree of inhibition and amount of hormone needed for maximal effect, it can be consistently observed. Inhibition of semidehydroascorbate reductase is discussed in terms of the enzyme's function in regenerating ascorbate as antioxidant and oxidant-like insulin effects.  相似文献   

4.
Cytochrome b561 transfers electrons across secretory vesicle membranes in order to regenerate intravesicular ascorbic acid. To show that cytosolic ascorbic acid is kinetically competent to function as the external electron donor for this process, electron transfer rates between cytochrome b561 in adrenal medullary chromaffin vesicle membranes and external ascorbate/semidehydroascorbate were measured. The reduction of cytochrome b561 by external ascorbate may be measured by a stopped-flow method. The rate constant is 450 (+/- 190) M-1 s-1 at pH 7.0 and increases slightly with pH. The rate of oxidation of cytochrome b561 by external semidehydroascorbate may be deduced from rates of steady-state electron flow. The rate constant is 1.2 (+/- 0.5) x 10(6) M-1 s-1 at pH 7.0 and decreases strongly with pH. The ratio of the rate constants is consistent with the relative midpoint reduction potentials of cytochrome b561 and ascorbate/semidehydroascorbate. These results suggest that cytosolic ascorbate will reduce cytochrome b561 rapidly enough to keep the cytochrome in a mostly reduced state and maintain the necessary electron flux into vesicles. This supports the concept that cytochrome b561 shuttles electrons from cytosolic ascorbate to intravesicular semidehydroascorbate, thereby ensuring a constant source of reducing equivalents for intravesicular monooxygenases.  相似文献   

5.
Some types of secretory vesicles, such as the chromaffin vesicles of the adrenal medulla, have cytochrome b561 which is believed to mediate the transfer of electrons across the vesicle membrane. To characterize the kinetics of this process, we have examined the rate of electron transfer from ascorbate trapped within chromaffin vesicle ghosts to external ferricyanide. The rate of ferricyanide reduction saturates at high ferricyanide concentrations. The reciprocal of the rate is linearly related to the reciprocal of the ferricyanide concentration. The internal ascorbate concentration affects the y intercept of this double-reciprocal plot but not the slope. These observations and theoretical considerations indicate that the slope is associated with a rate constant k1 for the oxidation of cytochrome b561 by ferricyanide. The intercept is associated with a rate constant k0 for the reduction of cytochrome b561 by internal ascorbate. From k0 and standard reduction potentials, the rate constant k-0 for the reduction of internal semidehydroascorbate by cytochrome b561 can be calculated. Under conditions prevailing in vivo, this rate of semidehydroascorbate reduction appears to be much faster than the expected rate of semidehydroascorbate disproportionation. This supports the hypothesis that cytochrome b561 functions in vivo to reduce intravesicular semidehydroascorbate thereby maintaining intravesicular ascorbic acid.  相似文献   

6.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   

7.
Njus D  Wigle M  Kelley PM  Kipp BH  Schlegel HB 《Biochemistry》2001,40(39):11905-11911
The 1 equiv reaction between ascorbic acid and cytochrome b(561) is a good model for redox reactions between metalloproteins (electron carriers) and specific organic substrates (hydrogen-atom carriers). Diethyl pyrocarbonate inhibits the reaction of cytochrome b(561) with ascorbate by modifying a histidine residue in the ascorbate-binding site. Ferri/ferrocyanide can mediate reduction of DEPC-treated cytochrome b(561) by ascorbic acid, indicating that DEPC-inhibited cytochrome b(561) cannot accept electrons from a hydrogen-atom donor like ascorbate but can still accept electrons from an electron donor like ferrocyanide. Ascorbic acid reduces cytochrome b(561) with a K(m) of 1.0 +/- 0.2 mM and a V(max) of 4.1 +/- 0.8 s(-1) at pH 7.0. V(max)/K(m) decreases at low pH but is approximately constant at pH >7. The rate constant for oxidation of cytochrome b(561) by semidehydroascorbate decreases at high pH but is approximately constant at pH <7. This suggests that the active site must be unprotonated to react with ascorbate and protonated to react with semidehydroascorbate. Molecular modeling calculations show that hydrogen bonding between the 2-hydroxyl of ascorbate and imidazole stabilizes the ascorbate radical relative to the monoanion. These results are consistent with the following mechanism for ascorbate oxidation. (1) The ascorbate monoanion binds to an unprotonated site (histidine) on cytochrome b(561). (2) This complex donates an electron to reduce the heme. (3) The semidehydroascorbate anion dissociates from the cytochrome, leaving a proton associated with the binding site. (4) The binding site is deprotonated to complete the cycle. In this mechanism, an essential role of the cytochrome is to bind the ascorbate monoanion, which does not react by outer-sphere electron transfer in solution, and complex it in such a way that the complex acts as an electron donor. Thermodynamic considerations show that no steps in this process involve large changes in free energy, so the mechanism is reversible and capable of fulfilling the cytochrome's function of equilibrating ascorbate and semidehydroascorbate.  相似文献   

8.
In chromaffin vesicles, the enzyme dopamine beta-monooxygenase converts dopamine to norepinephrine. It is believed that reducing equivalents for this reaction are supplied by intravesicular ascorbic acid and that the ascorbate is regenerated by importing electrons from the cytosol with cytochrome b-561 functioning as the transmembrane electron carrier. If this is true, then the ascorbate-regenerating system should be capable of providing reducing equivalents to any ascorbate-requiring enzyme, not just dopamine beta-monooxygenase. This may be tested using chromaffin-vesicle ghosts in which an exogenous enzyme, horseradish peroxidase, has been trapped. If ascorbate and peroxidase are trapped together within chromaffin-vesicle ghosts, cytochrome b-561 in the vesicle membrane is found in the reduced form. Subsequent addition of H2O2 causes the cytochrome to become partially oxidized. H2O2 does not cause this oxidation if either peroxidase or ascorbate are absent. This argues that the cytochrome is oxidized by semidehydroascorbate, the oxidation product of ascorbate, rather than by H2O2 or peroxidase directly. The semidehydroascorbate must be internal because the ascorbate from which it is formed is sequestered and inaccessible to external ascorbate oxidase. This shows that cytochrome b-561 can transfer electrons to semidehydroascorbate within the vesicles and that the semidehydroascorbate may be generated by any enzyme, not just dopamine beta-monooxygenase.  相似文献   

9.
Vitamin C. Biosynthesis, recycling and degradation in mammals   总被引:1,自引:0,他引:1  
Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3-diketo-l-gulonate, which is spontaneously degraded to oxalate, CO(2) and l-erythrulose. This is at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroascorbate.  相似文献   

10.
Plasma membranes isolated from K562 cells contain an NADH-ascorbate free radical reductase activity and intact cells show the capacity to reduce the rate of chemical oxidation of ascorbate leading to its stabilization at the extracellular space. Both activities are stimulated by CoQ10 and inhibited by capsaicin and dicumarol. A 34-kDa protein (p34) isolated from pig liver plasma membrane, displaying NADH-CoQ10 reductase activity and its internal sequence being identical to cytochrome b 5 reductase, increases the NADH-ascorbate free radical reductase activity of K562 cells plasma membranes. Also, the incorporation of this protein into K562 cells by p34-reconstituted liposomes also increased the stabilization of ascorbate by these cells. TPA-induced differentiation of K562 cells increases ascorbate stabilization by whole cells and both NADH-ascorbate free radical reductase and CoQ10 content in isolated plasma membranes. We show here the role of CoQ10 and its NADH-dependent reductase in both plasma membrane NADH-ascorbate free radical reductase and ascorbate stabilization by K562 cells. These data support the idea that besides intracellular cytochrome b 5-dependent ascorbate regeneration, the extracellular stabilization of ascorbate is mediated by CoQ10 and its NADH-dependent reductase.  相似文献   

11.
The primary reaction product of chloroplast ascorbate peroxidaseactivity was shown to be monodehydroascorbate radical (MDA).MDA reductase (EC 1.6.5.4 [EC] ) was localized in spinach chloroplaststroma. The MDA reductase activity of spinach chloroplasts,using NAD(P)H as electron donor, could account for the regenerationof ascorbate from MDA produced by ascorbate peroxidase activity.In the absence of MDA reductase, MDA disproportionated to ascorbate(AsA) and dehydroascorbate (DHA). The DHA was reduced to AsAby DHA reductase (EC 1.8.5.1 [EC] ) in chloroplasts. Both NADH andNADPH served as the electron donor of partially purified MDAreductase from spinach leaves. (Received September 24, 1983; Accepted January 23, 1984)  相似文献   

12.
Kipp BH  Kelley PM  Njus D 《Biochemistry》2001,40(13):3931-3937
Cytochrome b(561) mediates equilibration of the ascorbate/semidehydroascorbate redox couple across the membranes of secretory vesicles. The cytochrome is reduced by ascorbic acid and oxidized by semidehydroascorbate on either side of the membrane. Treatment with diethyl pyrocarbonate (DEPC) inhibits reduction of the cytochrome by ascorbate, but this activity can be restored by subsequent treatment with hydroxylamine, suggesting the involvement of an essential histidine residue. Moreover, DEPC inactivates cytochrome b(561) more rapidly at alkaline pH, consistent with modification of a histidine residue. DEPC does not affect the absorption spectrum of cytochrome b(561) nor does it change the midpoint reduction potential, confirming that histidine modification does not affect the heme. Ascorbate protects the cytochrome from inactivation by DEPC, indicating that the essential histidine is in the ascorbate-binding site. Further evidence for this is that DEPC treatment inhibits oxidation of the cytochrome by semidehydroascorbate but not by ferricyanide. This supports a reaction mechanism in which ascorbate loses a hydrogen atom by donating a proton to histidine and transferring an electron to the heme.  相似文献   

13.
The gene encoding (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase was cloned from the genomic DNA of the soil isolate bacterium Corynebacterium aquaticum M-13. The gene contained an open reading frame consisting of 801 nucleotides corresponding to 267 amino acid residues. The deduced amino acid sequence showed approximately 35% identity with other short chain alcohol dehydrogenase/reductase (SDR) superfamily enzymes. The probable NADH-binding site and three catalytic residues (Ser-Tyr-Lys) were conserved. The enzyme was sufficiently produced in recombinant Escherichia coli cells using an expression vector pKK223-3, and purified to homogeneity by two-column chromatography steps. The enzyme purified from E. coli catalyzed stereo- and regio-selective reduction of levodione, and was strongly activated by monovalent cations, such as K+, Na+, and NH4 +, as was the case of that from C. aquaticum M-13. To our knowledge, this is the first sequencing report of a monovalent cation-activated SDR enzyme.  相似文献   

14.
Hereditary methemoglobinemia with generalized deficiency of NADH-cytochrome b5 reductase (b5R) (type II) is a rare disease characterized by severe developmental abnormalities, which often lead to premature death. Although the molecular relationship between the symptoms of this condition and the enzyme deficit are not understood, it is thought that an important cause is the loss of the lipid metabolizing activities of the endoplasmic reticulum-located reductase. However, the functions of the form located on outer mitochondrial membranes have not been considered previously. In this study, we have analyzed the gene of an Italian patient and identified a novel G-->T transversion at the splice-acceptor site of the 9th exon, which results in the complete absence of immunologically detectable b5R in blood cells and skin fibroblasts. In cultured fibroblasts of the patient, NADH-dependent cytochrome c reductase, ferricyanide reductase, and semidehydroascorbate reductase activities were severely reduced. The latter activity is known to be due to b5R located on outer mitochondrial membranes. Thus, our results demonstrate that the reductase in its two membrane locations, endoplasmic reticulum and outer mitochondrial membranes, is the product of the same gene and suggest that a defect in ascorbate regeneration may contribute to the phenotype of hereditary methemoglobinemia of the generalized type.  相似文献   

15.
Soybean (Glycine max [L.] Merr.) root nodules contain the enzymes of the ascorbate-glutathione pathway to minimize oxidative damage. In the present study, fractionation and immunocytochemistry were used to determine the subcellular location of the enzymes of this pathway. All four enzymes (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase) were present in the soluble fraction from nodule plant cells and in isolated mitochondria. No activity was detected in peroxisomes. Bacteroids contained glutathione reductase but not the other enzymes of this pathway. Immunogold localization indicated that ascorbate peroxidase was present in the cytosol of infected and uninfected cells but not in the peribacteroid space. Results of immunogold and immunofluorescence studies indicated that monodehydroascorbate reductase was located primarily in the cell wall, suggesting that ascorbate regeneration in the cytoplasm may proceed primarily through the action of dehydroascorbate reductase. The possible roles of monodehydroascorbate reductase in cell wall metabolism are discussed.  相似文献   

16.
The levels of lipid hydroperoxides and antioxidants in plasma samples from Nagase analbuminemic rats (NAR) and control Sprague-Dawley rats (SDR) were measured in comparison with those from normal human subjects. Cholesteryl ester hydroperoxide (CE-OOH) was detected, but phosphatidylcholine hydroperoxide was not. The levels of CE-OOH and the ratios of CE-OOH/CE were found to increase significantly in the order of human < SDR < NAR, suggesting that oxidative stress increases in the same order. NAR have a significantly lower level of ascorbate and lower ratio of ubiquinol/ubiquinone concentrations than SDR. This also suggests that NAR are subject to more oxidative stress than SDR, since ascorbate and ubiquinol are the most effective plasma antioxidants against oxygen radicals.  相似文献   

17.
The Escherichia coli protein BdcA (previously referred to as YjgI) plays a key role in the dispersal of cells from bacterial biofilms, and its constitutive activation provides an attractive therapeutic target for dismantling these communities. In order to investigate the function of BdcA at a molecular level, we integrated structural and functional studies. Our 2.05 Å structure of BdcA shows that it is a member of the NAD(P)(H)-dependent short-chain dehydrogenase/reductase (SDR) superfamily. Structural comparisons with other members of the SDR family suggested that BdcA binds NADP(H). This was demonstrated experimentally using thermal denaturation studies, which showed that BcdA binds specifically to NADPH. Subsequent ITC experiments further confirmed this result and reported a Kd of 25.9 µM. Thus, BdcA represents the newest member of the limited number of oxidoreductases shown to be involved in quorum sensing and biofilm dispersal.  相似文献   

18.
Isozymes of both nitrate reductase (NR) and nitrite reductase(NiR) have been found in plant tissues, mainly after partialpurification. We have used starch gel electrophoresis to examineboth NR and NiR in crude extracts. Only one NR and one NiR enzymewere found in wheat tissues and no difference in mobilitiescould be detected between root and leaf enzymes. It was confirmedthat some tissues of corn have two NiR isozymes.  相似文献   

19.
Four NADPH-dependent aldehyde reductases (ALRs) isolated from pig brain have been characterized with respect to substrate specificity, inhibition by drugs, and immunological criteria. The major enzyme, ALR1, is identical in these respects with the high-Km aldehyde reductase, glucuronate reductase, and tissue-specific, e.g., pig kidney aldehyde reductase. A second enzyme, ALR2, is identical with the low-Km aldehyde reductase and aldose reductase. The third enzyme, ALR3, is carbonyl reductase and has several features in common with prostaglandin-9-ketoreductase and xenobiotic ketoreductase. The fourth enzyme, unlike the other three which are monomeric, is a dimeric succinic semialdehyde reductase. All four of these enzymes are capable of reducing aldehydes derived from the biogenic amines. However, from a consideration of their substrate specificities and the relevant Km and Vmax values, it is likely that it is ALR2 which plays a primary role in biogenic aldehyde metabolism. Both ALR1 and ALR2 may be involved in the reduction of isocorticosteroids. Despite its capacity to reduce ketones, ALR3 is primarily an aldehyde reductase, but clues as to its physiological role in brain cannot be discerned from its substrate specificity. The capacity of succinic semialdehyde reductase to reduce succinic semialdehyde better than any other substrate shows that this reductase is aptly named and suggests that its primary role is the maintenance in brain of physiological levels of gamma-hydroxybutyrate.  相似文献   

20.
A cDNA clone encoding ascorbate free radical (AFR) reductase (EC 1.6.5.4) was isolated from tomato (Lycopersicon esculentum Mill.) and its mRNA levels were analyzed. The cDNA encoded a deduced protein of 433 amino acids and possessed amino acid domains characteristic of flavin adenine dinucleotide- and NAD(P)H-binding proteins but did not possess typical eukaryotic targeting sequences, suggesting that it encodes a cytosolic form of AFR reductase. Low-stringency genomic DNA gel blot analysis indicated that a single nuclear gene encoded this enzyme. Total ascorbate contents were greatest in leaves, with decreasing amounts in stems and roots and relatively constant levels in all stages of fruit. AFR reductase activity was inversely correlated with total ascorbate content, whereas the relative abundance of AFR reductase mRNA was directly correlated with enzyme activity in tissues examined. AFR reductase mRNA abundance increased dramatically in response to wounding, a treatment that is known to also induce ascorbate-dependent prolyl hydroxylation required for the accumulation of hydroxyproline-rich glycoproteins. In addition, AFR reductase may contribute to maintaining levels of ascorbic acid for protection against wound-induced free radical-mediated damage. Collectively, the results suggest that AFR reductase activity is regulated at the level of mRNA abundance by low ascorbate contents or by factors that promote ascorbate utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号