首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homologous portions of linkage group (LG) VI in the rabbit Oryctolagus cuniculus, chromosome 8 in Mus musculus, and LG V of Rattus norvegicus have been observed. These linkage groups in Oryctolagus and Mus contain the extension locus (e), where recessive alleles are known in many species. Preliminary linkage data have added new loci to linkage group VI of the rabbit, revised the order and map distances on the linkage map, and by comparison with rodent species have strengthened the homology of LG VI in the rabbit with chromosome 8 of the mouse and with LG V of the rat. LG VI now contains five loci with the following order and intervening map distances: Es-1, Es-2 complex--6.3 +/- 2.1 cM--Est-1, Est-2 complex--18.5 +/- 3.7 cM--e.  相似文献   

2.
We have constructed a 64-cM molecular genetic linkage map of mouse chromosome 4 using interspecific backcross animals derived from mating C57BL/6J and Mus spretus mice. Several proto-oncogenes and common sites of viral integration have been assigned regional locations on chromosome 4 including Mos, Lyn, Jun, Lmyc, Lck, Fgr, and Dsi-1. Additional loci mapped in this study to chromosome 4 were Tsha, Mup-1, Rrm2-ps1, Ifa, and Anf. A comparison of our mapping data with inbred strain mapping data did not show any evidence for inversions or deletions on chromosome 4. New regions of synteny were defined between mouse chromosome 4 and human chromosomes 1 and 8; a region of homology was found between mouse chromosome 4 and human chromosome 6. This linkage map will provide a framework for identifying homologous genes in mice and humans that may be involved in various disease processes.  相似文献   

3.
Microdissection and microcloning have been utilized in order to create a bank of clones from the proximal region of mouse chromosome 7. Several important loci map to this area, including the albino locus (c), pink-eye dilution (p), and the developmental mutant, pudgy (pu). By use of interspecific crosses between Mus musculus domesticus and Mus spretus, we have generated backcross progeny segregating for the mutations chinchilla (cch) and pink-eye dilution (p). Exploiting the evolutionary divergence between the two species, we have analyzed the inheritance of restriction fragment length variants of three microclones and their linkage to the two markers cch and p, respectively. All three clones studied map to the dissected region, and as such also show genetic linkage to the pudgy locus. This bank of chromosome 7-derived microclones should provide molecular start points for the isolation of a variety of developmental loci of unknown gene product, including the pudgy locus.  相似文献   

4.
A molecular genetic linkage map of mouse chromosome 7   总被引:6,自引:0,他引:6  
A M Saunders  M F Seldin 《Genomics》1990,8(3):525-535
The homology between mouse chromosome 7 and human chromosomes 11, 15, and 19 was examined using interspecific backcross animals derived from mating C3H/HeJ-gld/gld and Mus spretus mice. In an earlier study, we reported on the linkage relationships of 16 loci on mouse chromosome 7 and the homologous relationship between this chromosome and the myotonic dystrophy gene region on human chromosome 19. Segregation analyses were used to extend the gene linkage relationships on mouse chromosome 7 by an additional 21 loci. Seven of these genes (Cyp2a, D19F11S1h, Myod-1, Otf-2, Rnu1p70, Rnu2pa, and Xrcc-1) were previously unmapped in the mouse. Several potential mouse chromosome 7 genes (Mel, Hkr-1, Icam-1, Pvs) did not segregate with chromosome 7 markers, and provisional chromosomal assignments were made. This study establishes a detailed molecular genetic linkage map of mouse chromosome 7 that will be useful as a framework for determining linkage relationships of additional molecular markers and for identifying homologous disease genes in mice and humans.  相似文献   

5.
Interspecific mouse backcross analysis was used to generate a molecular genetic linkage map of mouse chromosome 10. The map locations of the Act-2, Ahi-1, Bcr, Braf, Cdc-2a, Col6a-1, Col6a-2, Cos-1, Esr, Fyn, Gli, Ifg, Igf-1, Myb, Pah, pgcha, Ros-1 and S100b loci were determined. These loci extend over 80% of the genetic length of the chromosome, providing molecular access to many regions of chromosome 10 for the first time. The locations of the genes mapped in this study extend the known regions of synteny between mouse chromosome 10 and human chromosomes 6, 10, 12 and 21, and reveal a novel homology segment between mouse chromosome 10 and human chromosome 22. Several loci may lie close to, or correspond to, known mutations. Preferential transmission of Mus spretus-derived alleles was observed for loci mapping to the central region of mouse chromosome 10.  相似文献   

6.
D J Norman  C Fletcher  N Heintz 《Genomics》1991,9(1):147-153
The lurcher (Lc) mutant mouse strain exhibits postnatal degeneration of cerebellar Purkinje cells. We have typed progeny from an intersubspecific, phenotypic backcross at seven loci to develop a genetic linkage map which spans approximately 35 cM surrounding and including the Lc locus on mouse chromosome 6. [(Mus musculus castaneus x B6CBA-Aw-J/A-Lc)F1 x B6CBA-Aw-J/A]N2 progeny were scored visually for the lurcher phenotype and molecularly, through restriction fragment length polymorphism analysis, for six cloned markers. Two candidate genes, Npy and Pcp-1, which map to mouse chromosome 6 and which are expressed in the cerebellum, are demonstrated to be distinct from Lc. Three genes are shown to be closely linked to the Lc locus, and the map order cen-Cpa-Npy-Cbl-1-Lc-Igk, Fabpl-Pcp-1 is determined. The molecular genetic linkage map presented here represents progress toward isolating a clone of the Lc gene.  相似文献   

7.
A genetic linkage map of markers for the short arm of human chromosome 8 has been constructed with 14 polymorphic DNA markers on the basis of genotypes obtained in 40 CEPH reference families. This unbroken map spans 45 cM in males and 79 cM in females. The 14 markers include three genes, MSR, LPL, and NEFL, and one anonymous DNA segment that were previously assigned to chromosome 8. The other 10 marker had been isolated from a chromosome 8-specific cosmid library and physically localized to chromosomal bands by fluorescence in situ hybridization. The order of loci determined by genetic linkage was consistent with their physical locations. This map will facilitate efficient linkage studies of human genetic diseases that may be segregating on chromosome 8p and will provide anchor points for development of high-resolution maps for this chromosomal region.  相似文献   

8.
At least six separate genes determining tissue- and organelle-specific isoforms of carbonic anhydrase are known. We have determined the chromosome location of one of these genes, carbonic anhydrase-3 (Car-3), in the mouse and carried out a linkage analysis of Car-1, Car-2, and Car-3. Car-3 has been assigned to band 3A2 by in situ hybridization. We identified a PstI restriction fragment length polymorphism between Mus spretus and Mus mus domesticus and, by using an interspecific backcross, showed that Car-3 is 2.4 +/- 1.7% SE from both Car-1 and Car-2, calculating genetic distance as percentage recombination. No recombinants were found between Car-1 and Car-2 in 100 backcross offspring, and when these data are combined with earlier results, these two loci are estimated to be 1.2 cM from each other at the 95% confidence interval. The three homologous carbonic anhydrase loci in man had earlier been assigned to 8q22, and the finding of linkage of Car-3 to Car-1 and Car-2 in the mouse adds another locus to the conserved segments on mouse chromosome 3 and human chromosome 8.  相似文献   

9.
A genetic linkage map of 27 loci on the short arm of human chromosome 1 has been developed by analysis of the 40 families in the Centre d'Etude du Polymorphisme Humain (CEPH) reference panel. Probes that recognize 14 novel RFLPs at loci designated D1S9-D1S22 were isolated from a flow-sorted chromosome 1 library. A linkage map of chromosome 1p was constructed from the genotypic data at these 14 loci, RFLPs at eight cloned genes (PND, ALPL, FUCA1, SRC2, MYCL, GLUT, TSHB, and NGFB), two previously identified RFLPs (D1S2 and D1S57), two blood group antigens (RH and FY), and the isozyme PGM1. All 27 loci form a continuous linkage group, from FY to PND, of 102 cM in males and 230 cM in females. This map provides a basis for highly informative multipoint mapping studies for most of the short arm of chromosome 1.  相似文献   

10.
The objective of this project was to integrate the currently available linkage maps for bovine chromosome 7 (BTA7) by combining data sets from eight research groups. A total of 54 unique markers were typed in eight pedigrees. Multilocus linkage analysis with CRI-MAP produced a bovine chromosome 7 consensus framework map of 27 loci ordered with odds greater than 1000:1. Furthermore, we present a bovine chromosome 7 comprehensive map integrating 54 loci. The locus order is in general agreement with the recently published linkage maps except for one discrepancy. The order of loci BM9289, BMS713, and ILSTS001 was reversed in the consensus framework map relative to the published USDA-MARC bovine chromosome 7 linkage map.  相似文献   

11.
Werner syndrome (WRN) is an inherited disorder that produces symptoms of premature aging. This disease is caused by a recessive mutation that has previously been mapped to chromosome 8p. We have now used genetic linkage analysis to map the WRN gene relative to chromosome 6 reference loci, to screen candidate genes, and to identify a novel dinucleotide repeat polymorphic marker closely linked to WRN. The WRN locus was mapped relative to the marker loci, PLAT, ANK1, D8S135, and D8S87 of the comprehensive chromosome 8 linkage map. The heregulin (HRG) and the fibroblast growth factor receptor 1 genes (FGFR1) have been mapped to chromosome 8p and are involved in cellular growth. Recombination events were detected between WRN and the HRG and FGFR1 genes, excluding them as candidates for the WRN gene. A polymorphic marker generated in this study, WT251, is linked to WRN at a recombination fraction of 0.006, with a lod score of 16.5.  相似文献   

12.
To facilitate the identification of the gene responsible for Clouston hidrotic ectodermal dysplasia (HED), we used a chromosome 13-specific radiation hybrid panel to map 54 loci in the HED candidate region. The marker retention data were analyzed using RHMAP version 3. The 54 markers have an average retention frequency of 31.6% with decreasing retention as a function of distance from the centromere. Two-point analysis identified three linkage groups with a threshold lod score of 4.00; one linkage group consisted of 49 loci including the centromeric marker D13Z1 and the telomeric flanking marker for the HED candidate region D13S143. Assuming a centromeric retention model, multipoint maximum likelihood analysis of these 49 loci except D13Z1 provided a 1000:1 framework map ordering 29 loci with 21 unique map positions and approximately 2000 times more likely than the next order. Loci that could not be ordered with this level of support were positioned within a range of adjacent intervals. This map spans 347 cR9000, has an average resolution of 17.3 cR9000, and includes 3 genes (TUBA2, GJbeta2, and FGF-9), 18 ESTs, 19 polymorphic loci, and 8 single-copy DNA segments. Comparison of our RH map to a YAC contig showed an inconsistency in order involving a reversed interval of 6 loci. Fiber-FISH and FISH on interphase nuclei analyses with PACs isolated from this region supported our order. We also describe the isolation of 8 new chromosome 13q polymorphic (CA)n markers that have an average PIC value of 0.67. These data and mapping reagents will facilitate the isolation of disease genes from this region.  相似文献   

13.
A 64-centiMorgan linkage map of mouse chromosome 9 was developed using cloned DNA markers and an interspecific backcross between Mus spretus and the C57BL/6J inbred strain. This map was compared to conventional genetic maps using six markers previously localized in laboratory mouse strains. These markers included thymus cell antigen-1, cytochrome P450-3, dilute, transferrin, cholecystokinin, and the G-protein alpha inhibitory subunit. No evidence was seen for segregation distortion, chromosome rearrangements, or altered genetic distances in the results from interspecific backcross mapping. Regional map locations were determined for four genes that were previously assigned to chromosome 9 using somatic cell hybrids. These genes were glutathione S-transferase Ya subunit (Gsta), the T3 gamma subunit, the low density lipoprotein receptor, and the Ets-1 oncogene. The map locations for these genes establish new regions of synteny between mouse chromosome 9 and human chromosomes 6, 11, and 19. In addition, the close linkage detected between the dilute and Gsta loci suggests that the Gsta locus may be part of the dilute/short ear complex, one of the most extensively studied genetic regions of the mouse.  相似文献   

14.
We have generated a 30-cM molecular genetic linkage map of the proximal half of mouse chromosome 14 by interspecific backcross analysis. Loci that were mapped in this study include Bmp-1, Ctla-1, Hap, hr, Plau, Psp-2, Rib-1, and Tcra. A region of homology between mouse chromosome 14 and human chromosome 10 was identified by the localization of Plau to chromosome 14. This interspecific backcross map will be valuable for establishing linkage relationships of additional loci to mouse chromosome 14.  相似文献   

15.
N G Irving  J A Hardy  S D Brown 《Genomics》1991,9(2):386-389
Utilizing a Mus spretus/Mus domesticus (C57BL/10) interspecific backcross, we have constructed a multipoint genetic map of mouse chromosome 16 that extends 43.2 cM from the proximal Prm-1 locus to the distal Ets-2 locus. The genetic map incorporates three new markers: D16Smh6, a random genomic clone; Pgk-1ps1, a phosphoglycerate kinase pseudogene; and the growth-associated protein Gap43. The map position of Gap43 indicates the presence, on mouse chromosome 16, of a significant-size conserved linkage group with human chromosome 3.  相似文献   

16.
We have used an interspecific backcross between C57BL/6J and Mus spretus to derive a molecular genetic linkage map of chromosome 15 that includes 25 molecular markers and spans 93% of the estimated length of chromosome 15. Using a second interspecific backcross that was analyzed with a centromere-specific marker, we were also able to position our map with respect to the chromosome 15 centromere. This map provides molecular access to many discrete regions on chromosome 15, thus providing a framework for establishing relationships between cloned DNA markers and known mouse mutations and for identifying homologous genes in mice and humans that may be involved in disease.  相似文献   

17.
Construction of genetic linkage maps for nonhuman primate species provides information and tools that are useful for comparative analysis of chromosome structure and evolution and facilitates comparative analysis of meiotic recombination mechanisms. Most importantly, nonhuman primate genome linkage maps provide the means to conduct whole genome linkage screens for localization and identification of quantitative trait loci that influence phenotypic variation in primate models of common complex human diseases such as atherosclerosis, hypertension, and diabetes. In this study we improved a previously published baboon whole genome linkage map by adding more loci. New loci were added in chromosomal regions that did not have sufficient marker density in the initial map. Relatively low heterozygosity loci from the original map were replaced with higher heterozygosity loci. We report in detail on baboon chromosomes 5, 12, and 18 for which the linkage maps are now substantially improved due to addition of new informative markers.  相似文献   

18.
This paper describes the Centre d'Etude du Polymorphisme Humain (CEPH) consortium linkage map of chromosome 2. The map contains 36 loci defined by genotyping generated from the CEPH family DNAs. A total of 73 different markers were typed by 14 contributing laboratories; of these, 36 loci are ordered on the map with likelihood support of at least 1000:1. Markers are placed along the length of the chromosome but no markers were available to anchor the map at either telomere or the centromere. Multilocus linkage analysis has produced male, female, and sex-averaged maps extending for 261, 430, and 328 cM, respectively. The sex-averaged map contains five intervals greater than 15 cM and the mean genetic distance between the 36 uniquely placed loci is 9.1 cM.  相似文献   

19.
E Schurr  E Skamene  K Morgan  M L Chu  P Gros 《Genomics》1990,8(3):477-486
We have investigated the degree of synteny between the long arm (q) of human chromosome 2 and the proximal portion of mouse chromosome 1. To define the limits of synteny, we have determined whether mouse homologs of seven human genes mapping to chromosome 2q cosegregated with anchor loci on mouse chromosome 1. The loci investigated were NEB/Neb, ELN/Eln, COL3A1/Col3a1, CRYG/Len-2, FN1/Fn-1, VIL/Vil, and COL6A3/Col6a3. Ren-1,2 and Acrg were included as two proximal mouse chromosome 1 anchor loci. The segregation of restriction fragment length polymorphisms at these loci was analyzed in the progeny of Mus spretus x C57BL/6J hybrids backcrossed to the C57BL/6J inbred strain. We found that five of the structural protein loci and the two anchor loci form a linkage group on proximal murine chromosome 1. The proposed gene order of this group of linked markers is centromere - Col3a1 - Len-2-Fn-1-Vil-Acrg-Col6a3-Ren1,2. Neb and Eln are linked neither to each other nor to any other marker on proximal mouse chromosome 1. Therefore, the mouse loci Col3a1 and Col6a3 are identified as flanking markers of the linkage group of structural protein loci. The estimated genetic map distances are Col3a1-13.3 cM-Len-2-3.4 cM-Fn-1-3.8 cM-Vil-9.6 cM-Acrg-2.1 cM-Col6a3-18.3 cM-Ren1,2. The available map information for human chromosome 2q markers and mouse chromosome 1 markers presented here tentatively identifies Col3a1 and Col6a3 as the border markers that define the limits of the syntenic chromosome segment. The order of mouse genes on chromosome 1 and their human homologs on chromosome 2q also appears to be conserved, suggesting that mapping of murine genes on the conserved segment may be useful to predict gene order in man.  相似文献   

20.
A map of 22 loci on human chromosome 22.   总被引:7,自引:0,他引:7  
We constructed a genetic linkage map of the entire long arm of human chromosome 22 with 30 polymorphic markers, defining 22 loci. The map consists of a continuous linkage group 110 cM long, when male and female recombination fractions are combined; average distance between the loci is 5.2 cM. All loci were placed on the map with high support against alternative orders (odds in excess of 1000:1). The order of loci presented in our map is in full agreement with that of the previous linkage maps of chromosome 22 and with the physical assignment of markers. Two markers included in this map, KI-831 (D22S212) and pEFZ31 (D22S32), allowed us to better define the region of the (11;22) translocation breakpoint specific for Ewing sarcoma. Ten additional polymorphic markers were placed on the 22-loci map with odds lower than 1000:1 against alternative locations. In total, we have introduced 29 new markers on the linkage map of chromosome 22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号