首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catechin EGCG is the main flavonoid compound of green tea and has received enormous pharmacological attention because of its putative beneficial health effects. This study investigated for the first time the effect of EGCG on hERG channels, the main pharmacological target of drugs that cause acquired long QT syndrome.Cloned hERG channels were expressed in Xenopus oocytes and in HEK293 cells. Heterologous hERG currents were inhibited by EGCG with an IC50 of 6.0 μmol/l in HEK293 cells and an IC50 of 20.5 μmol/l in Xenopus laevis oocytes. Onset of effect was slow and only little recovery from inhibition was observed upon washout. In X. laevis oocytes EGCG inhibited hERG channels in the open and inactivated states, but not in the closed states. The half-maximal activation voltage of hERG currents was shifted by EGCG towards more positive potentials.In conclusion, EGCG is a low-affinity inhibitor of hERG sharing major electrophysiological features with pharmaceutical hERG antagonists.  相似文献   

2.
3.
The aim of the study was to examine the effects of epigallocatechin-3-gallate (EGCG) on hepatic fibrogenesis and on cultured hepatic stellate cells (HSCs). The rat model of carbon tetrachloride (CCl4)-induced hepatic fibrosis was used to assess the effect of daily intraperitoneal injections of EGCG on the indexes of fibrosis. Histological and hepatic hydroxyproline examination revealed that EGCG significantly arrested progression of hepatic fibrosis. EGCG caused significant amelioration of liver injury (reduced activities of serum alanine aminotransferase and aspartate aminotransferase). The development of CCl4-induced hepatic fibrosis altered the redox state with a decreased hepatic glutathione and increased the formation of lipid peroxidative products, which were partially normalized by treatment with EGCG, respectively. Moreover, EGCG markedly attenuated HSC activation as well as matrix metalloproteinase (MMP)-2 activity. In cultured stellate cell, the expression of MMP-2 mRNA and protein were substantially reduced by EGCG treatment. Concanavalin A-induced activation of secreted MMP-2 was inhibited by EGCG through the influence of membrane type 1-MMP activity. These results demonstrate that administration of EGCG may be useful in the treatment and prevention of hepatic fibrosis.  相似文献   

4.
The purpose of this study was to investigate the protective effect of black tea (BT) extract against induced oxidative damage in Jurkat T-cell line. Cells supplemented with 10 or 25 mg/L BT were subjected to oxidation with ferrous ions. Malondialdehyde (MDA) production as marker of lipid peroxidation, DNA single strand breaks as marker of DNA damage, and modification of the antioxidant enzyme activity, glutathione peroxidase (GPX) were measured. Results show the efficacy of BT polyphenols to decrease DNA oxidative damage and to affect GPX activity (P<0.05), while no effect was shown on MDA production. The succeeding investigation of the activity of caffeine and epigallocatechin gallate demonstrated their antioxidant potential with respect to the cellular markers evaluated. In conclusion, this study supports the protective effect of BT against ferrous ions induced oxidative damage to DNA and the ability of BT to affect the enzyme antioxidant system of Jurkat cells.  相似文献   

5.
Dune reed (DR) is the more tolerant ecotype of reed to environmental stresses than swamp reed (SR). Under osmotic stress mediated by polyethylene glycol (PEG-6000), the suspension culture of SR showed higher ion leakage, and more oxidative damage to the membrane lipids and proteins was observed compared with the relatively tolerant DR suspension culture. Treatment with sodium nitroprusside (SNP) can significantly alleviated PEG-induced ion leakage, thiobarbituric acid reactive substances (TBARS) and carbonyl contents increase in SR suspension culture. The levels of H(2)O(2) and O(2)(-) were reduced, and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were increased in both suspension cultures in the presence of SNP under osmotic stress, but lipoxygenase (LOX) activity was inhibited. 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific Nitric oxide (NO) scavenger, blocked the SNP-mediated protection. Depletion of endogenous NO with PTIO strongly enhanced oxidative damage in DR compared with that of PEG treatment alone, whereas had no effect on SR. Moreover, NO production increased significantly in DR while kept stable in SR under osmotic stress. Taken together, these results suggest that PEG induced NO release in DR but not SR can effectively protect against oxidative damage and confer an increased tolerance to osmotic stress in DR suspension culture.  相似文献   

6.
A dipping method was developed to extract the catechins (EGCG) and alkaloids (caffeine) from green tea (Korea) and black tea (Sri Lanka). The effects of the solvent composition (water vs. ethanol), extraction time, temperatures, and solvent pH on the amount of catechins (EGCG) and alkaloids (caffeine) extracted from green and black tea were investigated. Reversedphase high-performance liquid chromatography (RP-HPLC) was used to analyze the catechins (EGCG) and alkaloids (caffeine) extracted. The content of EGCG and caffeine in green tea extracts was in the range of 2.04∼0.30 and 10.22∼0.85 mg/g, respectively. The amount of EGCG and caffeine in black tea extracts was in the range of 0.32∼0.24 and 5.26∼1.01 mg/g, respectively. The amount of caffeine extracted from green and black tea was greater than the amount of EGCG. Pure water is the best solvent for extracting EGCG and caffeine from green tea. The amount of caffeine extracted from green and black tea increased as the temperature, extraction time, and hydrogen ion concentration of the solvent increased. Although the amount of EGCG extracted from green tea increased as the temperature increased, the amount of EGCG extracted from black tea was not affected by temperature. The extraction of EGCG from both green and black tea was not affected by the hydrogen ion concentration of the solvent.  相似文献   

7.
We examined HeLa cell viability and RNA oxidative damage in response to hydrogen peroxide (H2O2) treatment. The level of damaged RNA, measured by the content of 8-hydroxyguanosine (7,8-dihydro-8-oxoguanosine, 8-oxoG), increases depending on H2O2 dosage and is inversely correlated with cell viability. The elevated level of 8-oxoG in RNA decreases after removal of oxidative challenge, suggesting the existence of surveillance mechanism(s) for cleaning up oxidized RNA. Human polynucleotide phosphorylase (hPNPase), an exoribonuclease primarily located in mitochondria, has been previously shown to bind 8-oxoG-RNA with high affinity. The role of hPNPase in HeLa cell under oxidative stress conditions is examined here. Overexpression of hPNPase reduces RNA oxidation and increases cell viability against H2O2 insult. Conversely, hPNPase knockdown decreases viability and increases 8-oxoG level in HeLa cell exposed to H2O2. Our results suggest that hPNPase plays an important role in protecting cells and limiting damaged RNA under oxidative stress.  相似文献   

8.
Gpx4 protects mitochondrial ATP generation against oxidative damage   总被引:2,自引:0,他引:2  
Mitochondrial ATP production can be impaired by oxidative stress. Glutathione peroxidase 4 (Gpx4) is an antioxidant defense enzyme found in mitochondria as well as other subcellular organelles that directly detoxifies membrane lipid hydroperoxides. To determine if Gpx4 protects ATP production in vivo, we compared mitochondrial ATP production between wild-type mice and Gpx4 transgenic mice using a diquat model. Diquat (50 mg/kg) significantly decreased mitochondrial ATP synthesis in livers of wild-type mice; however, no decrease in mitochondrial ATP synthesis was detected in Gpx4 transgenic mice after diquat. We observed no differences in activities of mitochondrial respiratory chain complexes between Gpx4 transgenic mice and wild-type mice. However, compared to wild-type mice, diquat-induced loss of mitochondrial membrane potential was attenuated in Gpx4 transgenic mice. Therefore, our results indicate that decreased ATP production under oxidative stress is primarily due to reduced mitochondrial membrane potential and overexpression of Gpx4 maintains mitochondrial membrane potential under oxidative stress.  相似文献   

9.
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Systemic inflammatory state, oxidative stress injury, and atrial fibrosis are identified as the main mechanisms for AF. Considering the multifactorial mechanisms of AF, a novel therapeutic agent with multi-bioactivities should be presented. Regular consumption of green tea has been associated with a reduced risk of coronary heart disease and against a large number of pathologic conditions. Recent results indicate that green tea extract, especially (-)-epigallocatechin-3-gallate, could effectively decrease inflammatory factors secretion, antagonize oxidation, and inhibit matrix metalloproteinase activities. Inhibition of inflammation, modulation of oxidative stress, and targeting tissue fibrosis represent new approaches in tackling AF; therefore, green tea may be an innovative therapeutic candidate to prevent the occurrence, maintenance, and recurrence of AF.  相似文献   

10.
Zaveri NT 《Life sciences》2006,78(18):2073-2080
Can drinking several cups of green tea a day keep the doctor away? This certainly seems so, given the popularity of this practice in East Asian culture and the increased interest in green tea in the Western world. Several epidemiological studies have shown beneficial effects of green tea in cancer, cardiovascular, and neurological diseases. The health benefits associated with green tea consumption have also been corroborated in animal studies of cancer chemoprevention, hypercholesterolemia, artherosclerosis, Parkinson's disease, Alzheimer's disease, and other aging-related disorders. However, the use of green tea as a cancer chemopreventive or for other health benefits has been confounded by the low oral bioavailability of its active polyphenolic catechins, particularly epigallocatechin-3-gallate (EGCG), the most active catechin. This review summarizes the purported beneficial effects of green tea and EGCG in various animal models of human diseases. Dose-related differences in the effects of EGCG in cancer versus neurodegenerative and cardiovascular diseases, as well as discrepancies between doses used in in vitro studies and achievable plasma understanding of the in vivo effects of green tea catechins in humans, before the use of green tea is widely adopted as health-promoting measure.  相似文献   

11.
《Phytomedicine》2014,21(3):217-224
Epidemiological evidence has shown an association between tea consumption and the prevention of bone loss in the elderly. Previous studies indicated that green tea exerted osteoprotective effect in vivo. This study aims to investigate the constituents in Huangshan Maofeng tea and systemically evaluate their antioxidative and osteogenic effects in vitro. Five flavanes, isolated from Huangshan Maofeng tea, showed effects on proliferation of osteoblastic cells and ameliorated H2O2-induced C2C12 mouse myoblast cell apoptosis at 3.125–50 μg/ml. (−)-Epicatechin observably increased alkaline phosphatase (ALP) activity and hydroxyproline content. (−)-Epiafzelechin at 25 μg/ml significantly increased the area of mineralized bone nodules. The activities of flavanes in promoting osteblastic proliferation and differentiation are positively correlated with activities in protecting against apoptosis in C2C12 cells. It indicates that anti-osteoporosis effect of these flavanes may be linked to their antioxidative activity. The observed effects of these flavanes suggest that these flavanes may have beneficial effects on bone health.  相似文献   

12.
Oxidative stress, DNA damage, and unresolved inflammation are the predisposing factors of many chronic and degenerative diseases, including cancer. Stingless bee honey (SBH) is recognized to have high medicinal value by traditional medicine practitioners and has been used to treat various illnesses traditionally. This study aimed to determine the antioxidant, anti-inflammatory, and genoprotective effects of SBH by using in vitro cell culture models. The sugar content, total phenolic content, radical scavenging activity, and ferric reducing antioxidant power (FRAP) of SBH were determined in this study. Then, the protective effect of SBH against hydrogen peroxide (H2O2)-induced cell death and DNA damage was studied by using WIL2-NS human lymphoblastoid cell line, while the lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages cell line was used to study the anti-inflammatory effects of SBH. Results from this present study showed that the major sugar contents of SBH were fructose (19.39 + 0.01%) and glucose (14.03 ± 0.03%). Besides, the total phenolic content, the radical scavenging activity, and the FRAP value of SBH were 15.38 ± 0.02 mg GAE/100 g of honey, 34.04 ± 0.21%, and 206.77 + 1.76 μM AAE/100 g honey respectively. Pretreatment with SBH protected WIL2-NS cells from H2O2-induced cell death and DNA damage (p < 0.001). Moreover, SBH was also able to attenuate the production of nitric oxide by inhibiting the expression of inducible nitric oxide synthase in LPS-induced RAW 264.7 cells (p < 0.001). In conclusion, SBH is rich in total phenolic content and possesses strong antioxidant, anti-inflammatory, and genoprotective properties. Our current findings suggest that SBH might be useful in the prevention and treatment of many diseases caused by oxidative stress and inflammation assuming the observed effects are also achievable in vivo.  相似文献   

13.
The normal deformability of erythrocytes plays an important role in ensuring blood mobility, erythrocyte longevity, and microcirculation, which is the ability of erythrocytes to change shapes in response to external forces. However, the effects of curcumin extracts on the deformability of erythrocytes have not yet been evaluated. Accordingly, in this study, we explored the effects of pre-treatment with curcumin extract on erythrocyte deformation and erythrocyte band 3 (SLC4A1; EB3) expression. We also evaluated the associations between EB3 expression and erythrocyte deformability induced by hydrogen peroxide. Blood samples were divided into the control group, pre-treatment group (treated with curcumin extract or vitamin C), and negative control group, and oxidant stress parameters, antioxidant status, erythrocyte deformability and elasticity, and EB3 modifications were evaluated using immunoblotting and immunofluorescence staining. Hydrogen peroxide significantly increased oxidative stress parameters, modulus elasticity values and clustered EB3 levels and induced conjugation of membrane proteins to form high-molecular-weight complexes (p < 0.05). Erythrocyte deformability and elasticity were significantly decreased in the treated groups compared with those in the control group. Overall, our findings suggested that pre-treatment with curcumin extracts increased antioxidant status, reduced EB3 cross-linking, and improved erythrocyte deformability, to an even better extent than vitamin C. These results provide important insights into the effects of treatment with curcumin extracts on erythrocyte damage and suggest that curcumin may have applications in antioxidant therapy.  相似文献   

14.
Iron overload toxicity was shown to associate with chronic liver diseases which lead to hepatic fibrosis and subsequently the progression to cancer through oxidative stress and apoptotic pathways. Green tea potential activity as chelating, anti-oxidative, or anti-apoptotic mechanisms against metal toxicity was poorly clarified. Here, we are trying to evaluate the anti-oxidant and anti-apoptotic properties of green tea in the regulation of serum hepcidin levels, reduction in iron overloads, and improve of liver fibrosis in iron overloaded experimental rats. Three groups of male adult rats were randomly classified into three groups and treated as follows: control rats, iron treated rats for two months in drinking water followed by either vehicle or green tea extract (AGTE; 100 mg/kg) treatment for 2 more months. Thereafter, we studied the effects of AGTE on iron overload-induced lipid peroxidation, anti-oxidant depletion, liver cell injury and apoptosis. Treatment of iron-overloaded rats with AGTE resulted in marked decreases in iron accumulation within liver, depletion in serum ferritin, and hepcidin levels. Iron-overloaded rats had significant increase in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver when compared to control group. Also, significant change in cytochrome c and DNA content as apoptotic markers were reported in iron treated rats. The effects of iron overload on lipid peroxidation, NO levels, cytochrome c and DNA content were significantly reduced by the intervention treatment with AGTE (P < 0.001). Furthermore, the endogenous anti-oxidant capacities/levels (TAC) in liver were also significantly decreased in chronic iron overload and administration of AGTE restored the decrease in the hepatic antioxidant activities/levels. Also, hepatic hepcidin was shown to be significantly correlated with oxidative and apoptotic relating biomarkers as well as an improvement in liver fibrosis of iron treated rats following AGTE treatment. In-vitro analysis showed that, the improvement in iron toxicity of the liver depend mainly on antioxidant and protective ability of green tea polyphenolic compounds especiallyepigallocatechin-3-gallate (EGCG). Our study showed that green tea extract (GTE) ameliorates iron overload induced hepatotoxicity, apoptosis and oxidative stress in rat liver via inhibition of hepatic iron accumulation; improve of liver antioxidant capacity, and down regulation of serum hepcidin as well as reduction in the release of apoptotic relating proteins.  相似文献   

15.
Cadmium is an environmental toxic metal implicated in human diseases. In the present study, the effect of diphenyl diselenide, (PhSe)(2), on sub-chronic exposure with cadmium chloride (CdCl(2)) was investigated in rats. Male adult Swiss albino rats received CdCl(2) (10 micromol/kg, orally) and (PhSe)(2) (5 micromol/kg, orally) for a period of 30 days. A number of parameters were examined as indicators of toxicity, including hepatic and renal damage, glucose and glycogen levels and markers of oxidative stress. Cadmium content, liver histology, delta-aminolevulinate dehydratase (delta-ALA-D) activity, metallothionein (MT) levels were also evaluated. Cadmium content determined in the tissue of rats exposed to CdCl(2) provides evidence that the liver is the major cadmium target where (PhSe)(2) acts. The concentration of cadmium in liver was about three fold higher than that in kidney, and (PhSe)(2) reduced about six fold the levels of this metal in liver of rats exposed. Rats exposed to CdCl(2) showed histological alterations abolished by (PhSe)(2) administration. (PhSe)(2) administration ameliorated plasma malondialdehyde (MDA) levels, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma-glutamyl transferase (GGT) activities increased by CdCl(2) exposure. Urea and bilirubin levels increased by CdCl(2) exposure were also reduced by (PhSe)(2). In conclusion, this study demonstrated that co-treatment with (PhSe)(2) ameliorated hepatotoxicity and cellular damage in rat liver after sub-chronic exposure with CdCl(2). The proposed mechanisms by which (PhSe)(2) acts in this experimental protocol are its antioxidant properties and its capacity to form a complex with cadmium.  相似文献   

16.
BackgroundChromium (Cr) is a naturally-occurring element that is used in various fields of industry. Humans may be exposed to hexavalent chromium [Cr(VI)], which is one of the stable valence states of the chromium through contaminated soil, air, and water. Exposure to Cr(VI) through contaminated drinking water, soil and air causes various cancers and also fertility problems in animals and humans. Quercetin (QCT), a common flavonoid compound, has numerous biological effects as an antioxidant and free radical scavenger, but its function and mechanisms in reproductive processes in various species remain unclear. This study aims to determine the chromium effects on mice oocyte quality and the ameliorative effect of QCT in both in vitro and in vivo experimental models.MethodsFor the in vitro experiment, oocytes were collected and divided into the control, sham, QCT-treated, Cr(VI) (potassium dichromate), and treatment [Cr(VI)+QCT] groups. Collected oocytes were cultured in maturation medium with or without 10 µM quercetin and 10 µM Cr(VI) for 14 h based on the defined experimental design. For the in vivo experiment, the mice were randomly divided into the control, sham, QCT-treated, Cr(VI), and Cr(VI) + QCT groups. Control and sham mice received regular drinking water and diet. Cr(VI) group received Cr(VI) (50 ppm in drinking water) and Cr(VI) + QCT group received 50 ppm Cr(VI) with QCT (20 mg/kg body wt, through i.p) for a period of 21 days and then oocytes were collected and cultured for 14 h for in vitro maturation. For both experiments, at the end of the culture period, we examined the ameliorative effect of QCT on oocyte maturation, spindle formation, ROS production, mitochondrial function, and apoptosis.ResultsOur in vitro and in vivo results showed that Cr(VI) disrupt the oocyte maturation and spindle formation (P < 0.001). Furthermore, we found that exposure to Cr(VI) significantly increased ROS levels and decreased mitochondrial membrane potential (P < 0.001). In addition, exposure to Cr(VI) induced early apoptosis and downregulated the Bcl-2 mRNA expression and upregulated the Caspase-3 and Bax mRNAs expression (P < 0.01). Finally, quercetin significantly restored the detrimental effects of Cr(VI).ConclusionThe results indicated that quercetin protects the oocytes against Cr(VI) toxicity through the suppression of oxidative stress and apoptosis. The conclusions drawn from our study's findings suggest that quercetin might be useful agent for oocyte maturation in case of possible exposure to toxic substances such as chromium.  相似文献   

17.
Lung HL  Ip WK  Wong CK  Mak NK  Chen ZY  Leung KN 《Life sciences》2002,72(3):257-268
A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.  相似文献   

18.
In this study, we investigated whether a relationship exists between the levels of urate in vivo and lipid peroxidation during exercise. Seven healthy male subjects performed exhaustive cycling exercise under the following three conditions. The levels of urate, thiobarbituric acid reactive substances (TBARS) and allantoin in plasma and urine were examined before exercise and during a 3 h recovery period. (1) Benzbromarone administration experiment: benzbromarone (an uricosuric agent) was administered orally the day before exercise. (2) IMP administration experiment: inosine 5′-monophosphate disodium salt (a precursor of urate) was administered orally the day before exercise. (3) Control experiment: no test substance was administered. The main results obtained were as follows. Plasma urate levels and total peroxyl radical-trapping antioxidant parameter (TRAP) for deproteinized plasma in the resting period significantly decreased depending on the treatment, in the order of IMP > control > benzbromarone. A significant positive correlation was evident between plasma urate levels and TRAP values for deproteinized plasma. The increase in plasma levels of allantoin was observed only in the case of IMP treatment. A significant negative correlation between plasma levels of urate in the resting period and the amounts of urinary TBARS excreted during the recovery period was recognized. These results suggest that the urate level in vivo before exercise is a factor influencing lipid peroxidation during exhaustive exercise. Furthermore, these findings support the view that urate may serve as an important free-radical scavenger in vivo.  相似文献   

19.
In the present study, the efficacy of green tea catechins (GTC from the plant Camellia sinensis), with epigallocatechin gallate (EGCG), as the major component, was studied in relation to hepatic oxidative abnormalities in atherosclerotic rats. When male albino Wistar rats were fed an atherogenic diet for 30 days and then treated with saline for 7 or 15 days, there was a significant decline in hepatic mean activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase), and non-enzymatic antioxidants (reduced glutathione, vitamins C and E) while there was a significant elevation in the mean level of hepatic malondialdehyde (MDA), in comparison to the values noted in control rats fed a normal diet. In addition, a concomitant increase in the activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) was noted, when compared to the values in control rats. Following intraperitoneal administration of GTC (100 mg/kg) for 7 or 15 days to rats fed the atherogenic diet, significantly higher mean activities of enzymatic and non-enzymatic antioxidants and lower mean levels of MDA in hepatic tissue and lower mean activities of AST, ALT, ALP and LDH in serum were observed, compared to the values in the rats fed the atherogenic diet and treated with saline. Histopathological studies were performed to provide direct evidence of the atherogenic diet-induced hepatic changes and of the hepatoprotective effect of GTC. These results suggest that EGCG as a major component of green tea catechins may protect against the hepatic abnormalities occurring in Wistar rats fed an atherogenic diet.  相似文献   

20.
Excess hepatic lipid accumulation and oxidative stress contribute to nonalcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activities of green tea extract (GTE) would attenuate events leading to NAFLD. Obese mice (ob/ob; 5 weeks old, n=38) and their lean littermates (n=12) were fed 0%, 0.5% or 1% GTE for 6 weeks. Then, hepatic steatosis, oxidative stress and inflammatory markers were measured. Obese mice, compared to lean controls, had greater hepatic lipids and serum alanine aminotransferase (ALT). GTE at 1% lowered (P<.05) hepatic lipids and ALT in obese mice. The GTE-mediated attenuation in hepatic steatosis was accompanied by decreased mRNA expression of adipose sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl CoA desaturase-1, and hormone-sensitive lipase and decreased serum nonesterified fatty acid concentrations. Immunohistochemical data indicated that steatotic livers from obese mice had extensive accumulation of tumor necrosis factor-α (TNF-α), whereas GTE at 1% decreased hepatic TNF-α protein and inhibited adipose TNF-α mRNA expression. Hepatic total glutathione, malondialdehyde and Mn- and Cu/Zn-superoxide dismutase activities in obese mice fed GTE were normalized to the levels of lean littermates. Also, GTE increased hepatic catalase and glutathione peroxidase activities, and these activities were inversely correlated with ALT and liver lipids. Collectively, GTE mitigated NAFLD and hepatic injury in ob/ob mice by decreasing the release of fatty acids from adipose and inhibiting hepatic lipid peroxidation as well as restoring antioxidant defenses and decreasing inflammatory responses. These findings suggest that GTE may be used as an effective dietary strategy to mitigate obesity-triggered NAFLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号