首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Expression of ExoU by Pseudomonas aeruginosa is correlated with acute cytotoxicity in a number of epithelial and macrophage cell lines. In vivo, ExoU is responsible for epithelial injury. The absence of a known motif or significant homology with other proteins suggests that ExoU may possess a new mechanism of toxicity. To study the intracellular effects of ExoU, we developed a transient-transfection system in Chinese hamster ovary cells. Transfection with full-length but not truncated forms of ExoU inhibited reporter gene expression. Inhibition of reporter activity after cotransfection with ExoU-encoding constructs was correlated with cellular permeability and death. The toxicity of truncated versions of ExoU could be restored by coexpression of the remainder of the molecule from separate plasmids in trans. This strategy was used to map N- and C-terminal regions of ExoU that are necessary but not sufficient for toxicity. Disruption of a middle region of the protein reduces toxicity. This portion of the molecule is postulated to allow the N- and C-terminal regions to functionally complement one another. In contrast to ExoS and ExoT, native and recombinant ExoU molecules do not oligomerize or form aggregates. The complex domain structure of ExoU suggests that, like other P. aeruginosa-encoded type III effectors (ExoS and ExoT), ExoU toxicity may result from a molecule that possesses more than one activity.  相似文献   

5.
6.
7.
8.
The multifunctional replication protein of autonomous parvoviruses, NS1, is vital for viral genome replication and for the control of viral protein production. Two DNA-interacting domains of NS1, the N-terminal and helicase domains, are necessary for these functions. In addition, the N and C termini of NS1 are required for activation of viral promoter P38. By comparison with the structural and biochemical data from other parvoviruses, we identified potential DNA-interacting amino acid residues from canine parvovirus NS1. The role of the identified amino acids in NS1 binding dynamics was studied by mutagenesis, fluorescence recovery after photobleaching, and computer simulations. Mutations in the predicted DNA-interacting amino acids of the N-terminal and helicase domains increased the intranuclear binding dynamics of NS1 dramatically. A substantial increase in binding dynamics was also observed for NS1 mutants that targeted the metal ion coordination site in the N terminus. Interestingly, contrary to other mutants, deletion of the C terminus resulted in slower binding dynamics of NS1. P38 transactivation was severely reduced in both N-terminal DNA recognition and in C-terminal deletion mutants. These data suggest that the intranuclear dynamics of NS1 are largely characterized by its sequence-specific and -nonspecific binding to double-stranded DNA. Moreover, binding of NS1 is equally dependent on the N-terminal domain and conserved β-loop of the helicase domain.  相似文献   

9.
Coxsackievirus and adenovirus receptor (CAR) from which the cytoplasmic domain had been deleted and glycosylphosphatidylinositol (GPI)-anchored CAR lacking both transmembrane and cytoplasmic domains were both capable of facilitating adenovirus 5-mediated gene delivery and infection by coxsackievirus B3. These results indicate that the CAR extracellular domain is sufficient to permit virus attachment and entry and that the presence of a GPI anchor does not prevent infection.  相似文献   

10.
11.
12.
The hepatic leukemia factor (HLF) gene codes for a basic region-leucine zipper (bZIP) protein that is disrupted by chromosomal translocations in a subset of pediatric acute lymphoblastic leukemias. HLF undergoes fusions with the E2A gene, resulting in chimeric E2a-Hlf proteins containing the E2a transactivation domains and the Hlf bZIP DNA binding and dimerization motifs. To investigate the in vivo role of this chimeric bZIP protein in oncogenic transformation, its expression was directed to the lymphoid compartments of transgenic mice. Within the thymus, E2a-Hlf induced profound hypoplasia, premature involution, and progressive accumulation of a T-lineage precursor population arrested at an early stage of maturation. In the spleen, mature T cells were present but in reduced numbers, and they lacked expression of the transgene, suggesting further that E2a-Hlf expression was incompatible with T-cell differentiation. In contrast, mature splenic B cells expressed E2a-Hlf but at lower levels and without apparent adverse or beneficial effects on their survival. Approximately 60% of E2A-HLF mice developed lymphoid malignancies with a mean latency of 10 months. Tumors were monoclonal, consistent with a requirement for secondary genetic events, and displayed phenotypes of either mid-thymocytes or, rarely, B-cell progenitors. We conclude that E2a-Hlf disrupts the differentiation of T-lymphoid progenitors in vivo, leading to profound postnatal thymic depletion and rendering B- and T-cell progenitors susceptible to malignant transformation.  相似文献   

13.
Procollagen C-proteinase enhancers (PCPE-1 and -2) specifically activate bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family during C-terminal processing of fibrillar collagen precursors. PCPEs consist of two CUB domains (CUB1 and CUB2) and one NTR domain separated by one short and one long linker. It was previously shown that PCPEs can strongly interact with procollagen molecules, but the exact mechanism by which they enhance BMP-1 activity remains largely unknown. Here, we used a series of deletion mutants of PCPE-1 and two chimeric constructs with repetitions of the same CUB domain to study the role of each domain and linker. Out of all the forms tested, only those containing both CUB1 and CUB2 were capable of enhancing BMP-1 activity and binding to a mini-procollagen substrate with nanomolar affinity. Both these properties were lost by individual CUB domains, which had dissociation constants at least three orders of magnitude higher. In addition, none of the constructs tested could inhibit PCPE activity, although CUB2CUB2NTR was found to modulate BMP-1 activity through direct complex formation with the enzyme, resulting in a decreased rate of substrate processing. Finally, increasing the length of the short linker between CUB1 and CUB2 was without detrimental effect on both activity and substrate binding. These data support the conclusion that CUB1 and CUB2 bind to the procollagen substrate in a cooperative manner, involving the short linker that provides a flexible tether linking the two binding regions.  相似文献   

14.
The unknown protein family 0224 (UPF0224) includes three members that are expressed in germ-line cells in mice: Gtsf1, Gtsf1l, and BC048502 (Gtsf2). These genes produce proteins with two repeats of the CHHC Zn-finger domain, a predicted RNA-binding motif, in the N terminus. We previously reported that Gtsf1 is essential for spermatogenesis and retrotransposon suppression. In this study, we investigated the expression patterns and functions of Gtsf1l and Gtsf2. Interestingly, Gtsf1l and Gtsf2 were found to be sequentially but not simultaneously expressed in gonocytes and spermatids. Pull-down experiments showed that both GTSF1L and GTSF2 can interact with PIWI-protein complexes. Nevertheless, knocking out Gtsf1, Gtsf2, or both did not cause defects in spermatogenesis or retrotransposon suppression in mice.  相似文献   

15.
The role of glycoprotein E (gE) and gI of Marek's disease virus serotype 1 (MDV-1) for growth in cultured cells was investigated. MDV-1 mutants lacking either gE (20DeltagE), gI (20DeltagI), or both gE and gI (20DeltagEI) were constructed by recE/T-mediated mutagenesis of a recently established infectious bacterial artificial chromosome (BAC) clone of MDV-1 (D. Schumacher, B. K. Tischer, W. Fuchs, and N. Osterrieder, J. Virol. 74:11088-11098, 2000). Deletion of either gE or gI, which form a complex in MDV-1-infected cells, resulted in the production of virus progeny that were unable to spread from cell to cell in either chicken embryo fibroblasts or quail muscle cells. This was reflected by the absence of virus plaques and the detection of only single infected cells after transfection, even after coseeding of transfected cells with uninfected cells. In contrast, growth of rescuant viruses, in which the deleted glycoprotein genes were reinserted by homologous recombination, was indistinguishable from that of parental BAC20 virus. In addition, the 20DeltagE mutant virus was able to spread from cell to cell when cotransfected into chicken embryo fibroblasts with an expression plasmid encoding MDV-1 gE, and the 20DeltagI mutant virus exhibited cell-to-cell spread capability after cotransfection with a gI expression plasmid. The 20DeltagEI mutant virus, however, was not able to spread in the presence of either a gE or gI expression plasmid, and only single infected cells were detected by indirect immunofluorescence. The results reported here demonstrate for the first time that both gE and gI are absolutely essential for cell-to-cell spread of a member of the Alphaherpesvirinae.  相似文献   

16.
Introduction of bcl-2 gene in EIA + c-Ha-ras-transformed rat embryo fibroblasts, which are unable to be arrested after damaging influences and possess high proapoptotic sensitivity, results not only in suppression of cell death but also in re-establishment of cell cycle block following DNA damage and serum starvation. Flow cytometry showed that E1A + c-Ha-ras + bcl-2-transformants treated with DNA-intercalator adriamycin are capable of being arrested at G1/S boundary for a long time (for less than 5 days). According to the growth curve data, the number of Bcl-2-overexpressing cells remanins constant for a week of cultivation with adriamycin. Clonogenic efficacy of E1A + c-Ha-ras + bcl-2-cells is brought to no already in 16 h after adriamycin addition. Apoptotic death, revealed by oligonucleosomic fragmentation of DNA, as well as cell death, occurring due to mitotic catastrophe, after adriamycin treatment are almost absent in Bcl-2-overexpressing transformants, as compared with parental E1A + c-Ha-ras-transformants. Bcl-2 introduction in E1A + c-Ha-ras-transformants is accompanied by a rise of SA beta-Gal (Senescence Associated beta-Galactosidase) activity, which is commonly considered to be a marker of cell senescence. Adriamycin treatment of E1A + c-Ha-ras + bcl-2-transformants results in a much higher rise in SA beta-Gal activity, as compared with untreated cells. Co-immunoprecipitation experiments demonstrated the introduction of Bcl-2 to result in formation of Bcl-2 complexes with early region E1A oncoproducts, which are thought to be responsible for proapoptotic susceptibility of E1A-expressing transformants. The data obtained lead to suggestion that bcl-2 transfer to E1A + c-Ha-ras-transformants may induce a switch from the cell death program on the program of senescence after DNA damage, due, presumably, to Bcl-2 interaction with the apoptosis activator the viral oncoprotein E1A.  相似文献   

17.
Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. Different activities of PP2A and subcellular localization are determined by its regulatory subunits. Here we identified and characterized the functions of two protein phosphatase regulatory subunit homologs, ParA and PabA, in Aspergillus nidulans. Our results demonstrate that ParA localizes to the septum site and that deletion of parA causes hyperseptation, while overexpression of parA abolishes septum formation; this suggests that ParA may function as a negative regulator of septation. In comparison, PabA displays a clear colocalization pattern with 4′,6-diamidino-2-phenylindole (DAPI)-stained nuclei, and deletion of pabA induces a remarkable delayed-septation phenotype. Both parA and pabA are required for hyphal growth, conidiation, and self-fertilization, likely to maintain normal levels of PP2A activity. Most interestingly, parA deletion is capable of suppressing septation defects in pabA mutants, suggesting that ParA counteracts PabA during the septation process. In contrast, double mutants of parA and pabA led to synthetic defects in colony growth, indicating that ParA functions synthetically with PabA during hyphal growth. Moreover, unlike the case for PP2A-Par1 and PP2A-Pab1 in yeast (which are negative regulators that inactivate the septation initiation network [SIN]), loss of ParA or PabA fails to suppress defects of temperature-sensitive mutants of the SEPH kinase of the SIN. Thus, our findings support the previously unrealized evidence that the B-family subunits of PP2A have comprehensive functions as partners of heterotrimeric enzyme complexes of PP2A, both spatially and temporally, in A. nidulans.  相似文献   

18.
A recurrent translocation between chromosome 1 (Pbx1) and 19 (E2A) leading to the expression of the E2A-Pbx1 fusion oncoprotein occurs in approximately 5 to 10% of acute leukemias in humans. It has been proposed that some of the oncogenic potential of E2A-Pbx1 could be mediated through heterocomplex formation with Hox proteins, which are also involved in human and mouse leukemias. To directly test this possibility, mouse bone marrow cells were engineered by retroviral gene transfer to overexpress E2A-Pbx1a together with Hoxa9. The results obtained demonstrated a strong synergistic interaction between E2A-Pbx1a and Hoxa9 in inducing growth factor-independent proliferation of transduced bone marrow cells in vitro and leukemic growth in vivo in only 39 +/- 2 days. The leukemic blasts which coexpress E2A-Pbx1a and Hoxa9 showed little differentiation and produced cytokines such as interleukin-3, granulocyte colony-stimulating factor, and Steel. Together, these studies demonstrate that the Hoxa9 and E2A-Pbx1a gene products collaborate to produce a highly aggressive acute leukemic disease.  相似文献   

19.
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2’s repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition.  相似文献   

20.
Receptor tyrosine kinase-like orphan receptors (ROR) 1 and 2 are atypical members of the receptor tyrosine kinase (RTK) family and have been associated with several human diseases. The vertebrate RORs contain an ATP binding domain that deviates from the consensus amino acid sequence, although the impact of this deviation on catalytic activity is not known and the kinase function of these receptors remains controversial. Recently, ROR2 was shown to signal through a Wnt responsive, β-catenin independent pathway and suppress a canonical Wnt/β-catenin signal. In this work we demonstrate that both ROR1 and ROR2 kinase domains are catalytically deficient while CAM-1, the C. elegans homolog of ROR, has an active tyrosine kinase domain, suggesting a divergence in the signaling processes of the ROR family during evolution. In addition, we show that substitution of the non-consensus residues from ROR1 or ROR2 into CAM-1 and MuSK markedly reduce kinase activity, while restoration of the consensus residues in ROR does not restore robust kinase function. We further demonstrate that the membrane-bound extracellular domain alone of either ROR1 or ROR2 is sufficient for suppression of canonical Wnt3a signaling, and that this domain can also enhance Wnt5a suppression of Wnt3a signaling. Based on these data, we conclude that human ROR1 and ROR2 are RTK-like pseudokinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号