首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.  相似文献   

2.
In this study, a hydrocyclone (HC) especially designed for mammalian cell separation was applied for the separation of Chinese hamster ovary cells. The effect of key features on the separation efficiency, such as type of pumphead in the peristaltic feed pump, use of an auxiliary pump to control the perfusate flow rate, and tubing size in the recirculation loop were evaluated in batch separation tests. Based on these preliminary batch tests, the HC was then integrated to 50-L disposable bioreactor bags. Three perfusion runs were performed, including one where perfusion was started from a low-viability late fed-batch culture, and viability was restored. The successive runs allowed optimization of the HC-bag configuration, and cultivations with 20–25 days duration at cell concentrations up to 50 × 106 cells/ml were performed. Separation efficiencies up to 96% were achieved at pressure drops up to 2.5 bar, with no issues of product retention. To our knowledge, this is the first report in literature of high cell densities obtained with a HC integrated to a disposable perfusion bioreactor.  相似文献   

3.
A perfusion system is described for the production of a human monoclonal antibody in non-secreting murine myeloma (NS0) cells that was previously shown to be difficult to produce at high levels using fed-batch culture. The perfusion system was based on the use of a commercially available cell settler as the separation device to separate the cells from the culture. Separation efficiency of the cell settler was above 98%. Based on the growth and glucose consumption rates, fresh media was added to the culture and the turnover rate for the bioreactor was set at a maximum of 1.5 times the bioreactor volume per day. The perfusion process resulted in twice the maximum viable cell densities and up to three times the total protein production in a 53-day run period when compared to the fed-batch process. In addition, charge heterogeneity of the antibody as measured by ion exchange chromatography was lower for material purified from the perfusion runs compared to fed-batch. Perfusion mode of culture using a commercially available gravity settler is therefore a viable alternative to fed-batch mode for high-level production of this monoclonal antibody in NS0 cells.  相似文献   

4.
A cell retention device that provides reliable high-separation efficiency with minimal negative effects on the cell culture is essential for robust perfusion culture processes. External separation devices generally expose cells to periodic variations in temperature, most commonly temperatures below 37 degrees C, while the cells are outside the bioreactor. To examine this phenomenon, aliquots of approximately 5% of a CHO cell culture were exposed to 60 s cyclic variations of temperature simulating an acoustic separator environment. It was found that, for average exposure temperatures between 31.5 and 38.5 degrees C, there were no significant impacts on the rates of growth, glucose consumption, or t-PA production, defining an acceptable range of operating temperatures. These results were subsequently confirmed in perfusion culture experiments for average exposure temperatures between 31.6 and 38.1 degrees C. A 2(5-1) central composite factorial design experiment was then performed to systematically evaluate the effects of different operating variables on the inlet and outlet temperatures of a 10L acoustic separator. The power input, ambient temperature, as well as the perfusion and recycle flow rates significantly influenced the temperature, while the cell concentration did not. An empirical model was developed that predicted the temperature changes between the inlet and the outlet of the acoustic separator within +/-0.5 degrees C. A series of perfusion experiments determined the ranges of the significant operational settings that maintained the acoustic separator inlet and outlet temperatures within the acceptable range. For example, these objectives were always met by using the manufacturer-recommended operational settings as long as the recirculation flow rate was maintained above 15 L day(-1) and the ambient temperature was near 22 degrees C.  相似文献   

5.
Increasing worldwide demand for mammalian cell production capacity will likely be partially satisfied by a greater use of higher volumetric productivity perfusion processes. An important additional component of any perfusion system is the cell retention device that can be based on filtration, sedimentation, and/or acoustic technologies. A common concern with these systems is that pumping and transient exposure to suboptimal medium conditions may damage the cells or influence the product quality. A novel air-backflush mode of operating an acoustic cell separator was developed in which an injection of bioreactor air downstream of the separator periodically returned the captured cells to the reactor, allowing separation to resume within 20 s. This mode of operation eliminated the need to pump the cells and allows the selection of a residence time in the separator depending on the sensitivity of the cell line. The air-backflush mode of operating a 10L acoustic separator was systematically tested at 10(7) cells/mL to define reliable ranges of operation. Consistent separation performance was obtained for wide ranges of cooling airflow rates from 0 to 15 L/min and for backflush frequencies between 10 and 40 h(-1). The separator performance was optimized at a perfusion rate of 10 L/day to obtain a maximum separation efficiency of 92 +/- 0.3%. This was achieved by increasing the power setting to 8 W and using duty cycle stop and run times of 4.5 and 45 s, respectively. Acoustic cell separation with air backflush was successfully applied over a 110 day CHO cell perfusion culture at 10(7) cells/mL and 95% viability.  相似文献   

6.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACT

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.  相似文献   

7.
During the development of a new drug product, it is a common strategy to develop a first-generation process with the aim to rapidly produce material for pre-clinical and early stage clinical trials. At a later stage of the development, a second-generation process is then introduced with the aim to supply late-stage clinical trials as well as market needs. This work was aimed at comparing the performance of two different CHO cell culture processes (perfusion and fed-batch) used for the production of a therapeutically active recombinant glycoprotein at industrial pilot-scale. The first-generation process was based on the Fibra-Cel packed-bed perfusion technology. It appeared during the development of the candidate drug that high therapeutic doses were required (>100mg per dose), and that future market demand would exceed 100 kg per year. This exceeded by far the production capacity of the first-generation process, and triggered a change of technology from a packed-bed perfusion process with limited scale-up capabilities to a fed-batch process with scale-up potential to typical bioreactor sizes of 15m(3) or more. The productivity per bioreactor unit volume (in product m(-3)year(-1)) of the fed-batch process was about 70% of the level reached with the first-generation perfusion process. However, since the packed-bed perfusion system was limited in scale (0.6m(3) maximum) compared to the volumes reached in suspension cultures (15m(3)), the fed-batch was selected as second-generation process. In fact, the overall process performance (in product year(-1)) was about 18-fold higher for the fed-batch compared to the perfusion mode. Data from perfusion and fed-batch harvests samples indicated that comparable product quality (relative abundance of monomers dimers and aggregates; N-glycan sialylation level; isoforms distribution) was obtained in both processes. To further confirm this observation, purification to homogeneity of the harvest material from both processes, followed by a complementary set of studies (e.g. full physico-chemical characterization, assessment of in vitro and in vivo bioactivity, comparative pharmacokinetics and pharmacodynamics studies in relevant species, etc.) would be required. Finally, this illustrates the need to fix the production process early during the development of a new drug product in order to minimize process conversion efforts and to shorten product development time lines.  相似文献   

8.
This article is a review highlighting the application of the acoustic filter as a reliable cell retention device during the long-term perfusion of animal cell cultures. Critical operating parameters such as duty cycle, perfusion and re-circulation flow rates, acoustic power and backflush frequency are discussed with regard to influence on the separation efficiency and optimal operating ranges have been identified. Perfusion data gathered from the literature have been complemented with original data from a series of perfusion experiments carried out in the context of industrial projects for industrially relevant cell lines including NS0, HEK-293, SP2-derived hybridoma and insect cells in different serum-supplemented and serum-free media at different perfusion rates and acoustic chamber volumes. Finally, scale-up potential of the acoustic filter for large-scale industrial applications is discussed.  相似文献   

9.
Recombinant human interferon-beta (β-IFN), used in the therapeutic treatment of multiple sclerosis (MS), can be produced on a large-scale from genetically engineered Chinese hamster ovary (CHO) cells. However, its hydrophobicity causes non-reversible, molecular aggregation in culture. The parameters affecting aggregation were determined to be concentration, culture residence time, temperature and glycosylation. Although the protein can be produced in Escherichia coli in a non-glycosylated form, the addition of glycans confers a reduced rate of aggregation as well as a 10-fold higher bioactivity. We report on the application of a low temperature perfusion culture designed to control the parameters that cause aggregation. In this three-phase culture system there is a transition to a low temperature (32°C) in a batch mode prior to implementing perfusion at 1 volume/day using an acoustic cell separator. Perfusion at the low temperature resulted in a 3.5-fold increase in specific productivity and a 7-fold increase in volumetric productivity compared to the batch culture at 37°C. The percentage aggregation of β-IFN was reduced from a maximum of 43% in batch culture to a minimum of 5% toward the end of the perfusion phase. The glycosylation profile of all samples showed predominantly sialylated biantennary fucosylated structures. The extent of sialylation, which is important for bioactivity, was enhanced significantly in the perfusion culture, compared to the batch culture.  相似文献   

10.
11.
Bispecific protein scaffolds can be more complex than traditional monoclonal antibodies (MAbs) because two different sites/domains for epitope binding are needed. Because of this increased molecular complexity, bispecific molecules are difficult to express and can be more prone to physical and chemical degradation compared to MAbs, leading to higher levels of protein aggregates, clipped species, or modified residues in cell culture. In this study, we investigated cell culture performance for the production of three types of bispecific molecules developed at Amgen. In particular, we cultured a total of six CHO cell lines in both an approximately 12-day fed-batch process and an approximately 40-day high-density perfusion process. Harvested cell culture fluid from each process was purified and analyzed for product quality attributes including aggregate levels, clipped species, charge variants, individual amino acid modifications and host cell protein (HCP) content. Our studies showed that in average, the intensified perfusion process increased 15-fold the integrated viable cell density and the total harvested product (and fivefold the daily volumetric productivity) compared to fed-batch. Furthermore, bispecific product quality improved in perfusion culture (as analyzed in affinity-capture pools) with reduction in levels of aggregates (up to 72% decrease), clipped species (up to 75% decrease), acidic variants (up to 76% decrease), deamidated/isomerized species in complementarity-determining regions, and HCP (up to 84% decrease). In summary, the intensified perfusion process exhibited better productivity and product quality, highlighting the potential to use it as part of a continuous manufacturing process for bispecific scaffolds.  相似文献   

12.
A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 106 cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 107 to 1.8 × 107 cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.  相似文献   

13.
Mammalian cells are used for the production of numerous biologics including monoclonal antibodies. Unfortunately, mammalian cells can lose viability at later stages in the cell culture process. In this study, the effects of expressing the anti-apoptosis genes, E1B-19K and Aven, separately and in combination on cell growth, survival, and monoclonal antibody (MAb) production were investigated for a commercial Chinese Hamster Ovary (CHO) mammalian cell line. CHO cells were observed to undergo apoptosis following a model insult, glucose deprivation, and at later stages of batch cell culture. The CHO cell line was then genetically modified to express the anti-apoptotic proteins E1B-19K and/or Aven using an ecdysone-inducible expression system. Stable transfected pools induced to express Aven or E1B-19K alone were found to survive 1-2 days longer than the parent cell line following glucose deprivation while the expression of both genes in concert increased cell survival by 3 days. In spinner flask batch studies, a clonal isolate engineered to express both anti-apoptosis genes exhibited a longer operating lifetime and higher final MAb titer as a result of higher viable cell densities and viabilities. Interestingly, survival was increased in the absence of an inducer, most likely as a result of leaky expression of the anti-apoptosis genes confirmed in subsequent PCR studies. In fed-batch bioreactors, the expression of both anti-apoptosis genes resulted in higher growth rates and cell densities in the exponential phase and significantly higher viable cell densities, viabilities, and extended survival during the post-exponential phase. As a result, the integral of viable cells (IVC) was between 40 and 100% higher for cell lines engineered to express both Aven and E1B-19K in concert, and the operational lifetime of the fed-batch bioreactors was increased from 2 to 5 days. The maximum titers of MAb were also increased by 40-55% for bioreactors containing cells expressing Aven and E1B-19K. These increases in volumetric productivity arose primarily from enhancements in viable cell density over the course of the fed-batch culture period since the specific productivities for the cells expressing anti-apoptosis genes were comparable or slightly lower than the parental hosts. These results demonstrate that expression of anti-apoptosis genes can enhance culture performance and increase MAb titers for mammalian CHO cell cultures especially under conditions such as extended fed-batch bioreactor operation.  相似文献   

14.
A novel approach of design of experiment (DoE) is developed for the optimization of key substrates of the culture medium, amino acids, and sugars, by utilizing perfusion microbioreactors with 2 mL working volume, operated in high cell density continuous mode, to explore the design space. A mixture DoE based on a simplex-centroid is proposed to test multiple medium blends in parallel perfusion runs, where the amino acids concentrations are selected based on the culture behavior in presence of different amino acid mixtures, and using targeted specific consumption rates. An optimized medium is identified with models predicting the culture parameters and product quality attributes (G0 and G1 level N-glycans) as a function of the medium composition. It is then validated in runs performed in perfusion microbioreactor in comparison with stirred-tank bioreactors equipped with alternating tangential flow filtration (ATF) or with tangential flow filtration (TFF) for cell separation, showing overall a similar process performance and N-glycosylation profile of the produced antibody. These results demonstrate that the present development strategy generates a perfusion medium with optimized performance for stable Chinese hamster ovary (CHO) cell cultures operated with very high cell densities of 60 × 106 and 120 × 106 cells/mL and a low cell-specific perfusion rate of 17 pL/cell/day, which is among the lowest reported and is in line with the framework recently published by the industry.  相似文献   

15.
Animal cells are extensively used for the large-scale production of recombinant proteins. Processes and genetically engineered cell lines have been developed to enhance longevity of the culture and increase protein productivity. In this study, we tested the effect of diluting a culture of Chinese hamster ovary (CHO) cells with phosphate-buffered saline (PBS) on cell growth and efficiency of media utilization. An immunoglobulin G-expressing CHO cell line was cultured in CD CHO media followed by dilution of the culture with PBS after the end of the exponential phase. A 28% and 61% increase in protein yield per milliliter of media was observed in the diluted culture in the batch and fed-batch mode with glucose and protein hydrolysate feeding, respectively. To aid in analyzing the potential causes of this observed increase, an unstructured mathematical model was constructed using previously reported kinetics to simulate cell growth, nutrient utilization, and protein production. The model predicts an increase in recombinant protein yield per milliliter of media in PBS diluted cultures under both batch and fed-batch conditions, and suggests that this observed increase could at least partly be due to a decrease in inhibitor concentration in the diluted culture.  相似文献   

16.
The artificial chromosome expression (ACE) technology system uses an engineered artificial chromosome containing multiple site-specific recombination acceptor sites for the rapid and efficient construction of stable cell lines. The construction of Chinese hamster ovary(CHO) cell lines expressing an IgG1 monoclonal antibody (MAb) using the ACE system has been previously described (Kennard et al., Biotechnol Bioeng. 2009;104:540-553). To further demonstrate the manufacturing feasibility of the ACE system, four CHO cell lines expressing the human IgG1 MAb 4A1 were evaluated in batch and fed-batch shake flasks and in a 2-L fed-batch bioreactor. The batch shake flasks achieved titers between 0.7 and 1.1 g/L, whereas the fed-batch shake flask process improved titers to 2.5–3.0 g/L. The lead 4A1 ACE cell line achieved titers of 4.0 g/L with an average specific productivity of 40 pg/(cell day) when cultured in a non optimized 2-L fed-batch bioreactor using a completely chemically defined process. Generational stability characterization of the lead 4A1-expressing cell line demonstrated that the cell line was stable for up to 75 days in culture. Product quality attributes of the 4A1 MAb produced by the ACE system during the stability evaluation period were unchanged and also comparable to existing expression technologies such as the CHO-dhfr system. The results of this evaluation demonstrate that a clonal, stable MAb-expressing CHO cell line can be produced using ACE technology that performs competitively using a chemically defined fed-batch bioreactor process with comparable product quality attributes to cell lines generated by existing technologies.  相似文献   

17.
Acoustic cell retention devices have provided a practical alternative for up to 50 L/day perfusion cultures but further scale-up has been limited. A novel temperature-controlled and larger-scale acoustic separator was evaluated at up to 400 L/day for a 10(7) CHO cell/mL perfusion culture using a 100-L bioreactor that produced up to 34 g/day recombinant protein. The increased active volume of this scaled-up separator was divided into four parallel compartments for improved fluid dynamics. Operational settings of the acoustic separator were optimized and the limits of robust operations explored. The performance was not influenced over wide ranges of duty cycle stop and run times. The maximum performance of 96% separation efficiency at 200 L/day was obtained by setting the separator temperature to 35.1 degrees C, the recirculation rate to three times the harvest rate, and the power to 90 W. While there was no detectable effect on culture viability, viable cells were selectively retained, especially at 50 L/day, where there was a 5-fold higher nonviable washout efficiency. Overall, the new temperature-controlled and scaled-up separator design performed reliably in a way similar to smaller-scale acoustic separators. These results provide strong support for the feasibility of much greater scale-up of acoustic separations.  相似文献   

18.
Feng Q  Mi L  Li L  Liu R  Xie L  Tang H  Chen Z 《Journal of biotechnology》2006,122(4):422-430
Controlled-fed perfusion, a new operation mode, which combines the advantages of fed-batch and perfusion, has been reported to enhance monoclonal antibody productivity. The aim of the present study was to further enrich this mode by an "oxygen uptake rate-amino acids (OUR-AA)" strategy in which the feeding of amino acids was controlled according to the variation of OUR during perfusion. And the effects of this strategy on bioreactor productivity and product quality were evaluated. Experimental results indicated that by using this "OUR-AA" approach in controlled-fed perfusion mode a high viable cell density of more than 1.9 x 10(7)cells/ml was achieved and the productivity of mAb reached 325 mg/l/d, which was significantly increased by nearly twofold over those of the perfusion and fed-batch process. The residual concentrations of selected amino acids were controlled at a relative steady level by OUR during the culture. The immunoreactivity and the purity of the antibody were well preserved as the culture process was evolving from flask to the controlled-fed perfusion mode. The primary application of "OUR-AA" approach in controlled-fed perfusion mode may present a novel control strategy to enhance the culture performance and to display the potential of this approach in automatic control field.  相似文献   

19.
Amino acid availability is a key factor that can be controlled to optimize the productivity of fed-batch cultures. To study amino acid limitation effects, a serum-free chemically defined basal medium was formulated to exclude the amino acids that became depleted in batch culture. The effect of limiting glutamine, asparagine, and cysteine on the cell growth, metabolism, antibody productivity, and product glycosylation was investigated in three Chinese hamster ovary (CHO) cell lines (CHO-DXB11, CHO-K1SV, and CHO-S). Cysteine limitation was detrimental to both cell proliferation and productivity for all three CHO cell lines. Glutamine limitation reduced growth but not cell specific productivity, whereas asparagine limitation had no significant effect on either growth or cell specific productivity. Neither glutamine nor asparagine limitation significantly affected antibody glycosylation. Replenishing the CHO-DXB11 culture with cysteine after 1 day of cysteine limitation allowed the cells to partially recover their growth and productivity. This recovery was not observed after 2 days of cysteine limitation. Based on these findings, a fed-batch protocol was developed using single or mixed amino acid supplementation. Although cell density and antibody concentration were lower compared to a commercial feed, the feeds based on cysteine supplementation yielded comparable cell specific productivity. Overall, this study showed that different amino acid limitations have varied effects on the performance of CHO cell cultures and that maintaining cysteine availability is a critical process parameter for the three cell lines investigated.  相似文献   

20.
CHO cell culture high productivity relies on optimized culture medium management under fed-batch or perfused chemostat strategies enabling high cell densities. In this work, a dynamic metabolic model for CHO cells was further developed, calibrated and challenged using datasets obtained under four different culture conditions, including two batch and two fed-batch cultures comparing two different culture media. The recombinant CHO-DXB11 cell line producing the EG2-hFc monoclonal antibody was studied. Quantification of extracellular substrates and metabolites concentration, viable cell density, monoclonal antibody concentration and intracellular concentration of metabolite intermediates of glycolysis, pentose-phosphate and TCA cycle, as well as of energetic nucleotides, were obtained for model calibration. Results suggest that a single model structure with a single set of kinetic parameter values is efficient at simulating viable cell behavior in all cases under study, estimating the time course of measured and non-measured intracellular and extracellular metabolites. Model simulations also allowed performing dynamic metabolic flux analysis, showing that the culture media and the fed-batch strategies tested had little impact on flux distribution. This work thus paves the way to an in silico platform allowing to assess the performance of different culture media and fed-batch strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号