首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results from a study of soil solution concentrations of ammonium (NH4+), nitrate (NO3-), and amino acid N over one growing season along a local 90-m-long plant productivity gradient in a boreal forest. Three forest types are found along the gradient: an ericaceous dwarf-shrub type between 0 and 40 m, a low-herb type between 40 and 80 m, and a tall-herb type at 90 m. Soil sampling of the mor layer was performed in June, July, August and October in the three forest types. In addition, plant uptake of NH4+, NO3- and the amino acid glycine was investigated. A mixture of the three N forms was injected into the soil; one N form at a time was labeled with 15N, and in the case of glycine also with 13C. In the dwarf-shrub forest, where plant productivity was low, the soil N pool was strongly dominated by amino acid N. There, plants took up more NH4+ than NO3-. Glycine uptake did not differ significantly from either NH4+ or NO3- uptake. Along the gradient, soil concentrations of NH4+ and NO3- increased, as did plant productivity. In the low-herb forest NH4+ comprised a major portion of the soil N pool, and plants took up more NH4+ than NO3- or glycine. In the tall-herb forest, NO3- was as abundant as NH4+, and together these two N forms dominated the soil N pool. Here, plants took up nearly equal amounts of NO3- and NH4+, and this uptake exceeded that of glycine severalfold. Apart from the overall preference for NH4+ that plants exhibited throughout the gradient, the results show a correlation between soil concentrations of amino acids and NO3- and plant preferences for these N forms.  相似文献   

2.
In the N-limited alpine tundra, plants may utilize a diversity of N sources (organic and inorganic N) in order to meet their nutritional requirements. To characterize species-level differences in traits related to N acquisition, we analyzed foliar '15N, nitrate reductase activity (NRA) and mycorrhizal infection in co-occurring alpine species during the first half of the growing season and compared these traits to patterns of N uptake using a 15N (15N-NH4+, 15N-NO3-) or 13C,15N ([1]-13C-15N-glycine) tracer addition in the greenhouse. 13C enrichment in belowground tissue indicated that all species were capable of taking up labeled glycine, although only one species showed uptake of glycine potentially exceeding that of inorganic N. Species showing the most depleted foliar '15N and elevated NRA in the field also tended to show relatively high rates of NO3- uptake in the greenhouse. Likewise, species showing the most enriched foliar '15N also showed high rates of NH4+ uptake. The ratio of NO3-:NH4+ uptake rates and growth rate explained 64% and 72% of the variance in foliar '15N, respectively, suggesting that species differ in the ability to take up NO3- and NH4+ in the field and that such differences may enable species to partition soil N on the basis of N form.  相似文献   

3.
发生在水稻根际的硝化作用对水稻的氮素(N)营养受到人们越来越大的关注。在田间条件下研究了不同N效率粳稻品种(4007、武运粳7号和Elio)在无肥(0kgN/hm^2)、中肥(180kgN/hm^2)和高肥(300kgN/hm^2)水平下籽粒产量、吸N量、N肥利用率、根际土壤铵态氮(NH4^+-N)和硝态氮(NO3^--N)含量、硝化强度和氨氧化细菌(AOB)数量。结果表明不同水稻品种的籽粒产量在3个N处理中差异极显著,4007在中肥处理中获得最高产量11117kg/hm^2,而Eilo在所有处理中籽粒产量均最低。各品种地上部吸N量随施N量增加而增加,但各品种之间差异不显著。不同水稻品种N肥利用率差异显著,4007显著高于武运粳7号和Elio。本试验根据不同品种水稻在不施N肥水平下的籽粒产量与N肥利用率的大小,将3个品种分为N肥高效敏感型(4007)、N肥高效不敏感型(武运粳7号)和N肥低效不敏感型(Elio)。在水稻中后期干湿交替的水分管理条件下,无肥和中肥区的水稻根际土壤以NO3^--N为主;而在高肥区则以NH4^+-N为主。随着施N量增加,水稻根际土壤铵、硝态N含量也随之增加。NH4^+-N含量在无肥、中肥和高肥水平下分别为0.88、0.94mg/kg和13.5mg/kg,而NO3^--N含量分别为1.61、1.73mg/kg和2.33mg/kg。不同水稻品种根际土壤硝化强度之间差异极显著,在3个施N水平下均表现为4007〉武运粳7号〉Elio。其平均值分别为6.94、5.46μg/(kg·h)和2.42μg/(kg·h)。在3个施N水平下,Elio根际土壤AOB数量均显著低于4007和武运粳7号。4007根际土壤AOB数量在高肥水平下达最大值2.02×106个/g土,而最小值为中肥水平下Elio的根际土壤(1.89×105个/g土)。相关性分析表明,水稻根际土壤硝化强度在无肥、中肥和高肥条件下与产量呈极显著正相关关系(r=0.799,0.877,0.934),而且在中肥条件下与水稻N肥利用率显著相关(r=0.735)。水稻根际土壤AOB数量分别和硝化强度以及水稻籽粒产量呈极显著正相关关系。试验结果表明,水稻根际的硝化作用较大程度上决定着水稻籽粒产量或水稻N肥利用率。  相似文献   

4.
Scots pine (Pinus sylvestris L.) forests of northern Sweden are often considered to be N limited. This limitation may have been exacerbated by the elimination of wildfire as a natural disturbance factor in these boreal forests. Phenolic inhibition of N mineralization and nitrification (due to litter and exudates of ericaceous shrubs) has been proposed as a mechanism for N limitation of these forests, but this hypothesis remains largely untested. N mineralization rates, nitrification rates, and sorption of free phenolic compounds were assessed along a fire-induced chronosequence in northern Sweden. A total of 34 forest stands varying in age since the last fire were identified and characterized. Overstorey and understorey vegetative composition and depth of humus were analysed in replicated plots at all 34 sites. Eight of the forest stands aged 3-352 years since the last fire were selected for intensive investigation in which ten replicate ionic resin capsules (used to assess net N mineralization and nitrification) and non-ionic carbonaceous resin capsules (used to assess free phenolic compounds) were installed at the interface of humus and mineral soil. A highly significant correlation was observed between site age and net sorption of inorganic N to resin capsules. Net accumulation of NH4+ and NO3- on resin capsules followed a linear decrease (R2=0.61, P<0.01) with time perhaps as a result of increased N immobilization with successional C loading. NO3- sorption to resin capsules followed a logarithmic decrease (R2=0.80, P<0.01) that may be related to a logarithmic increase in dwarf shrub cover and decreased soil charcoal sorption potential along this chronosequence. A replicated field study was conducted at one of the late successional field sites to assess the influence of charcoal and an added labile N source on N turnover. Three rates of charcoal (0, 100, and 1,000 g M-2) and two rates of glycine (0 and 50 g N as glycine M-2) were applied in a factorial design to microplots in a randomized complete block pattern. Net ammonification (as assessed by NH4+ sorption to resins) was readily increased by the addition of a labile N source, but this increase in NH4+ did not stimulate nitrification. Nitrification was stimulated slightly by the addition of charcoal resulting in similar levels of resin-sorbed NO3- as those found in early successional sites. Resin-sorbed polyphenol concentrations were decreased with charcoal amendments, but were actually increased with N amendments (likely due to decomposition of polyphenols). Net N mineralization appears to be limited by rapid NH4+ immobilization whereas nitrification is limited by the lack of an appropriate environment or by the presence of inhibitory compounds in late successional forests of northern Sweden.  相似文献   

5.
Bunce  James A. 《Annals of botany》2001,87(4):463-468
Predicting responses of plant and global carbon balance to theincreasing concentration of carbon dioxide in the atmosphererequires an understanding of the response of plant respirationto carbon dioxide concentration ([CO2]). Direct effects of thecarbon dioxide concentration at which rates of respiration ofplant tissue are measured are quite variable and their effectsremain controversial. One possible source of variation in responsivenessis the energy status of the tissue, which could influence thecontrol coefficients of enzymes, such as cytochrome-c oxidase,whose activity is sensitive to [CO2]. In this study we comparedresponses of respiration rate to [CO2] over the range of 60to 1000 µmol mol-1in fully expanded leaves of four C3andfour C4herbaceous species. Responses were measured near themiddle of the normal 10 h dark period, and also after another24 h of darkness. On average, rates of respiration were reducedabout 70% by the prolonged dark period, and leaf dry mass perunit area decreased about 30%. In all species studied, the relativedecrease in respiration rate with increasing [CO2] was largerafter prolonged darkness. In the C3species, rates measured at1000 µmol mol-1CO2averaged 0.89 of those measured at 60µmol mol-1in the middle of the normal dark period, and0.70-times when measured after prolonged darkness. In the C4species,rates measured at 1000 µmol mol-1CO2averaged 0.79 of thoseat 60 µmol mol-1CO2in the middle of the normal dark period,and 0.51-times when measured after prolonged darkness. In threeof the C3species and one of the C4species, the decrease in theabsolute respiration rate between 60 and 1000 µmol mol-1CO2wasessentially the same in the middle of the normal night periodand after prolonged darkness. In the other species, the decreasein the absolute rate of respiration with increase in [CO2] wassubstantially less after prolonged darkness than in the middleof the normal night period. These results indicated that increasingthe [CO2] at the time of measurement decreased respiration inall species examined, and that this effect was relatively largerin tissues in which the respiration rate was substrate-limited.The larger relative effect of [CO2] on respiration in tissuesafter prolonged darkness is evidence against a controlling roleof cytochrome-c oxidase in the direct effects of [CO2] on respiration.Copyright 2001 Annals of Botany Company Carbon dioxide, respiration, Abutilon theophrasti(L.), Amaranthus retroflexus(L.),Amaranthus hypochondriacus (L.), Datura stramonium(L.), Helianthus annuus(L.), Solanum melongena(L.), Sorghum bicolor(L. Moench), Zea mays  相似文献   

6.
采用田间试验方法,研究了不同氮肥施用时期和基追比例对土壤硝态氮和铵态氮含量变化及小麦产量和品质的影响.结果表明:土壤硝态氮和铵态氮含量随着土层深度的增加而降低,不同氮肥施用时期和基追比例对0~20 cm土层土壤硝态氮和铵态氮含量均有显著影响;与氮肥全部基施处理相比,氮肥施用时期后移和基追比例的增加,明显提高了氮肥吸收利用率,减少了小麦全生育期土壤氮素的表观盈余量,同时显著改善了小麦籽粒品质;但对籽粒产量影响不显著,孕穗期追施比例过大导致产量显著降低.在本试验条件下,综合考虑产量、品质和生态效益,以基肥∶拔节肥∶孕穗肥为5∶3∶2为最佳氮肥运筹方式.  相似文献   

7.
 植物对土壤有效养分的影响是植物竞争取胜的重要生态策略之一, 土壤酶活性对土壤有效养分的变化具有重要作用。该文研究了紫茎 泽兰(Ageratina adenophora)单种(A)、非洲狗尾草(Setaria sphacelata)单种(S)和两物种混种(A+S)群落4种重要的土壤酶活性和土壤养分的 变化及其规律, 并对土壤酶活性与土壤养分进行了相关分析。结果表明: 1)群落S土壤有效氮(NH4+-N和NO3--N)含量高于群落A对应养分含量, 而与群落A+S该养分含量没有显著差异; 群落S土壤有效磷和有效钾含量低于群落A对应指标, 而群落A+S其含量最低。2)群落S、A+S和A土壤蛋 白酶和脲酶活性的高低次序分别为S>A+S>A、A+S>S>A; 群落A+S、S和A磷酸酶活性依次升高; 群落A+S、A和S蔗糖酶活性依次降低。3)在生长 过程中, 3类群落土壤NO3--N、有效磷和有效钾含量在生长初期(5月)最高, 随后逐渐降低; 土壤NH4+-N含量呈现单峰趋势, 在生长后期(9月)最 高。3类群落土壤蛋白酶和蔗糖酶活性随生长时间推移而升高, 在生长末期(11月)最高; 土壤磷酸酶和脲酶酶活性在生长过程中呈现单峰趋势, 在生长旺盛期(7月)最高。3类群落间土壤酶活性与土壤肥力具有较一致的相关性。由此推断, 非洲狗尾草对土壤含氮化合物的活化能力比紫茎 泽兰强, 且在种间竞争中能够强烈抑制紫茎泽兰对土壤含磷、含钾化合物的活化能力是其竞争取胜的可能原因; 不同植物群落土壤酶活性的差 异是引起土壤有效养分变化的重要驱动机制之一。  相似文献   

8.
以黄土高原南部17年长期定位试验不同处理土壤为研究对象,研究了不同肥料处理及撂荒条件下土壤氮素矿化特性、灭菌与不灭菌条件下不同肥力土壤对施入外源硝态氮转化的影响.结果表明:氮磷钾化肥和有机肥配施(MNPK)及长期撂荒处理显著提高了土壤有机质和全氮含量以及土壤氮素矿化量和矿化率;氮磷钾化肥(NPK)处理虽然提高了土壤无机氮含量,但对土壤有机质、全氮、土壤氮素矿化量和矿化率的影响相对较小.高温高压灭菌显著增加了土壤铵态氮含量,但对不同处理土壤硝态氮含量无明显影响;在灭菌土壤培养过程中,土壤铵态氮含量呈显著增加趋势.同一土壤类型,不论灭菌与否,培养过程中施入土壤的硝态氮含量保持相对稳定,说明在本研究培养条件下,生物因素和非生物因素对外源硝态氮在土壤中的转化无明显影响.  相似文献   

9.
The objectives of this study were to investigate how different soil types and elevated N deposition (0.7 vs 7 g N m-2a-1) influence the effects of elevated CO2 (370 vs 570 µmol CO2 mol-1) on soil nutrients and net accumulation of N, P, K, S, Ca, Mg, Fe, Mn, and Zn in spruce (Picea abies) and beech (Fagus sylvatica). Model ecosystems were established in large open-top chambers on two different forest soils: a nutrient-poor acidic loam and a nutrient-rich calcareous sand. The response of net nutrient accumulation to elevated atmospheric CO2 depended upon soil type (interaction soil 2 CO2, P<0.05 for N, P, K, S, Ca, Mg, Zn) and differed between spruce and beech. On the acidic loam, CO2 enrichment suppressed net accumulation of all nutrients in beech (P<0.05 for P, S, Zn), but stimulated it for spruce (P<0.05 for Fe, Zn) On the nutrient-rich calcareous sand, increased atmospheric CO2 enhanced nutrient accumulation in both species significantly. Increasing the N deposition did not influence the CO2 effects on net nutrient accumulation with either soil. Under elevated atmospheric CO2, the accumulation of N declined relative to other nutrients, as indicated by decreasing ratios of N to other nutrients in tree biomass (all ratios: P<0.001, except the N to S ratio). In both the soil and soil solution, elevated CO2 did not influence concentrations of base cations and available P. Under CO2 enrichment, concentrations of exchangeable NH4+ decreased by 22% in the acidic loam and increased by 50% in the calcareous sand (soil 2 CO2, P<0.001). NO3- concentrations decreased by 10-70% at elevated CO2 in both soils (P<0.01).  相似文献   

10.
 CO2浓度升高与氮沉降增加对陆地生态系统的耦合作用已成为全球变化的研究热点。应用大型开顶箱(OTC)人工控制手段研究了人工生态系统在1)高CO2(700±20 μmol·mol–1)+高氮沉降(100 kg N·hm–2·a–1)(CN); 2)高CO2(700±20 μmol·mol–1)+背景氮沉降(C+); 3)高氮沉降(100 kg N· hm–2·a–1)+背景CO2(N+); 4)背景CO2+背景氮沉降处理(CK) 4种处理条件下荷木 (Schima superba)、红锥(Castanopsis hystrix)、海南红豆(Ormosia pinnata)、肖蒲桃(Acmena acuminatissima)、红鳞蒲桃(Syzygium hancei)等主要南亚热带森林植物的生物量积累模式及其分配格局。连续近3年的实验结果表明: 不同处理条件下, 各参试植物生物量积累具有不同的响应特征, N+处理显著促进荷木、肖蒲桃及红鳞蒲桃生物量的积累; C+处理显著促进肖蒲桃、海南红豆生物量的积累; CN处理显著促进除红锥外其他物种生物量的积累, 并且具有两者单独处理的叠加效应。不同处理改变物种生物量的分配模式, N+处理降低植物的根冠比, 促进地上部分生物量的积累; C+处理增加红锥和红鳞蒲桃地下部分生物量的分配, 却促进荷木和海南红豆地上部分的积累; CN处理仅促进红磷蒲桃地下部分的积累。群落生物量的积累与分配格局取决于优势物种的生物量及其分配格局在群落中所占的权重。  相似文献   

11.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

12.
Levels of NO-3, NO-2 and NH+4 ions in leaves of six plant specieswere determined by capillary electrophoresis. Levels of NO-3ions differed by a factor of more than 350 in the six species.NO-2 and NH+4 ions were detected in all species examined butat lower and more similar respective levels than NO-3 ions. (Received March 8, 1996; Accepted June 24, 1996)  相似文献   

13.
We studied the responses of Xanthium occidentale (Bertol.) (cockleburor Noogoora burr), a noxious weed, to atmospheric CO2 enrichmentand nitrate-N concentrations in the root zone ranging from 0.5to 25 mM. CO2 enrichment (1500 cm3 m–3) increased dry-matterproduction to about the same extent (18 per cent) at all levelsof supplied N: most of the increment in dry matter was distributedequally between leaves and roots so that there was little effecton shoot-to-root dry-weight ratios. Growth was stimulated greatlyby N and plateaued at 12 mM supplied N. Shoot-to-root dry-weightand total N ratios increased with increasing N supply. CO2 enrichmenthad no effect on the total amount of N accumulated by plants,but increased the N-use efficiency of leaves. Enriched plantshad lower concentrations and quantities of N in their leavesthan controls, and therefore lower shoot-to-root total N ratios.Little free NO3 accumulated in organs of control or enrichedplants. NO3 was the major form of N in xylem sap fromdetopped plants at low supplied NO3-N, but amino N was equalin importance at high supplied NO3-N in control and enrichedplants. Concentrations of NO3 were lower in the xylemsap of CO2 enriched plants. It was concluded that the betterN-use efficiency of CO2 enriched plants could result in increasedgrowth of X. occidentale in regions of marginal soil fertilityas atmospheric levels of CO2 increase. CO2 enrichment, nitrogen, Xanthium, Noogoora burr, cocklebur  相似文献   

14.
Physiology and Growth of Wheat Across a Subambient Carbon Dioxide Gradient   总被引:5,自引:0,他引:5  
Two cultivars of wheat (Triticum aestivum L.), 'Yaqui 54' and'Seri M82', were grown along a gradient of daytime carbon dioxideconcentrations ([CO2]) from near 350-200 µmol CO2 mol-1air in a 38 m long controlled environment chamber. Carbon dioxidefluxes and evapotranspiration were measured for stands (plantsand soil) in five consecutive 7·6-m lengths of the chamberto determined potential effects of the glacial/interglacialincrease in atmospheric [CO2] on C3 plants. Growth rates andleaf areas of individual plants and net assimilation per unitleaf area and daily (24-h) net CO2 accumulation of wheat standsrose with increasing [CO2]. Daytime net assimilation (PD, mmolCO2 m-2 soil surface area) and water use efficiency of wheatstands increased and the daily total of photosynthetic photonflux density required by stands for positive CO2 accumulation(light compensation point) declined at higher [CO2]. Nighttimerespiration (RN, mmol CO2 m-2 soil surface) of wheat, measuredat 369-397 µmol mol-1 CO2, apparently was not alteredby growth at different daytime [CO2], but RN /PD of stands declinedlinearly as daytime [CO2] and PD increased. The responses ofwheat to [CO2], if representative of other C3 species, suggestthat the 75-100% increase in [CO2] since glaciation and the30% increase since 1800 reduced the minimum light and waterrequirements for growth and increased the productivity of C3plants.Copyright 1993, 1999 Academic Press Atmospheric carbon dioxide, carbon accumulation, evapotranspiration, light compensation point, net assimilation, respiration, Triticum aestivum, water use efficiency, wheat  相似文献   

15.
Indirect effects of atmospheric CO2 concentration [CO2], onlongleaf pine (Pinus palustris Mill.) foliage respiration werestudied by growing trees in a factorial arrangement of low andhigh [CO2] (369 and 729µmol CO2 mol–1) and low andhigh N (40 and 400 kg ha–1 yr–1). Direct effectsof [CO2] on leaf respiration were tested by measuring respirationrates of foliage from all treatments at two CO2 levels (360and 720µmol CO2mol–1) at the time of measurement.Elevated CO2 did not directly or indirectly affect leaf respirationwhen expressed on a leaf area or mass basis, but a significantincrease in respiration per unit leaf N was observed in treesgrown in elevated [CO2] (indirect response to elevated [CO2]).The lack of a [CO2] effect on respiration, when analysed onan area or mass basis, may have resulted from combined effectsof [CO2] on factors that increase respiration (e.g. greateravailability of non-structural carbohydrates stimulating growthand carbon export from leaves) and on factors that decreaserespiration (e.g. lower N concentration leading to lower constructioncosts and maintenance requirements). Thus, [CO2] affected factorsthat influence respiration, but in opposing ways. Key words: Pinus palustris, elevated CO2, nitrogen, foliar, respiration  相似文献   

16.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

17.
We examined changes in dry weight and leaf area within Dactylisglomerata L. plants using allometric analysis to determine whetherobserved patterns were truly affected by [CO2] and N supplyor merely reflect ontogenetic drift. Plants were grown hydroponicallyat four concentrations of in controlled environment cabinets at ambient (360 µll–1) or elevated (680 µl l–1) atmospheric[CO2]. Both CO2and N enrichment stimulated net dry matter production.Allometric analyses revealed that [CO2] did not affect partitioningof dry matter between shoot and root at high N supply. However,at low N supply there was a transient increase in dry matterpartitioning into the shoot at elevated compared to ambient[CO2] during early stages of growth, which is inconsistent withpredictions based on optimal partitioning theory. In contrast,dry matter partitioning was affected by N supply throughoutontogeny, such that at low N supply dry matter was preferentiallyallocated to roots, which is in agreement with optimal partitioningtheory. Independent of N supply, atmospheric CO2enrichment resultedin a reduction in leaf area ratio (LAR), solely due to a decreasein specific leaf area (SLA), when plants of the same age werecompared. However, [CO2] did not affect allometric coefficientsrelating dry weight and leaf area, and effects of elevated [CO2]on LAR and SLA were the result of an early, transient stimulationof whole plant and leaf dry weight, compared to leaf area production.We conclude that elevated [CO2], in contrast to N supply, changesallocation patterns only transiently during early stages ofgrowth, if at all. Copyright 2000 Annals of Botany Company Allometric growth, carbon dioxide enrichment, Cocksfoot, Dactylis glomerata L., dry weight partitioning, leaf area ratio, nitrogen supply, shoot:root ratio, specific leaf area  相似文献   

18.
Barley plants were grown in nutrient solution at two contrastingnitrate concentrations to produce plants of low or high nitrogen(N) status. Leaves were then exposed continuously to either0.3 mm3 dm–3 NO2 or clean air, with the roots and rootingmedium isolated from the polluted air. Uptake of NO2 was measuredin two ways; as depletion from an air stream containing thegas and using 15N-labelled NO2. Results from the two methodsagreed well and demonstrated that the flux of NO2 into the leavesof N-deficient barley was lower than that of N-sufficient plants.Nevertheless, the relative contribution of15N derived from 15NO2to the N status of the plant was greater in the plants suppliedwith low nitrate. A major factor in regulating NO2 uptake bybarley leaves appeared to be stomatal conductance, althoughinternal conductance may also be involved. The effects of NO2exposure of barley on carbon dioxide exchange rates, transpirationand water vapour conductance were also influenced by the N statusof the plant. Key words: Hordeum vulgare, 15N-labelled NO2, carbon dioxide exchange, transpiration  相似文献   

19.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

20.
Ricinus communis L. var. Gibsonii was grown in Long Ashton nutrientmedium with either 12mol m–3 NO3 or 8.0 mol m–3NH+4 as N source. Two plants from each N treatment were harvestedtwice a week and analysed for C, N, P, S, NO3, SO2–4ClK+Na+, Ca2+ Mg2+ and ash alkalinity. Statistical analysis of thedata showed that the effect of age and N source was differentfor the chemical variables analysed. Thus [Na+] was unaffectedby age or N source, and for both N sources [Mg2+] started atthe same level and decreased at the same rate as the plantsmatured. With NH+4 as N source, [SO2–4] was higher thanwith NO3, but did not alter with age. The concentrations,in mmol g–1 dry wt, of C, organic N, K+ and Ca2+ weredifferent for the two N sources, but the levels of these variablesaltered with age in the same way for both N sources; i.e. therewas no age x N interaction. In the case of P, NO3, Cl and COO, however,age-related variations were different for the two N sources.It is concluded, inter alia, that [Na+] is determined by external[Na+] alone, and that K+, Ca2+ and Cl are the inorganicions actively involved in charge balance during ion uptake bythe roots. Key words: Ontogeny, Chemical composition, Plant nutrition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号