首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Structure and Function of the Hair Cell Ribbon Synapse   总被引:6,自引:0,他引:6  
Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years.  相似文献   

2.
Glutamate (Glu) has at least two sites of action in the frog semicircular canal: the hair cell (presynaptic) and the primary afferent nerve fibres (postsynaptic). Glu's action on the hair cell results in an increased release of the natural transmitter which is responsible for a substantial increase in the frequency of firing in primary afferents. Glu produces a long-lasting depolarization in the afferent nerve fibres which does not by itself elicit any afferent discharge of impulses when the release of the natural transmitter is prevented. The difficulty of reconciling some of the observations made of the effects of Glu in semicircular canals with its presumed role as an afferent transmitter in this organ is discussed.  相似文献   

3.
Laser beam ablation of spiral ganglion neurons was performed in seven organotypic cultures of the newborn mouse cochlea between 5 and 8 days in vitro, with a recovery period of from 18 hours to 3 days. Direct somatic injury (laser or mechanical) inflicted on hair cells does not necessarily cause their death; many of them survive, repair damage and re-establish their neurosensory connections. By contrast, laser irradiation and ablation of their afferent spiral ganglion neurons causes a most spectacular degeneration of sensory cells within 18–48 hours after the insult. Ultrastructurally, the degenerated hair cells—characteristically the inner hair cells—display “dark-cell vacuolar degeneration” that combines the signs of apoptotic death (the peripheral condensation of nuclear chromatin and nuclear pyknosis) with signs of cell edema, vacuolization and necrosis. The ultimate condensation of the cytoplasm gives the dead cells a jet black appearance. The irradiated spiral ganglion neurons die displaying similar pathological characteristics. The extent and locus of inner hair cell degeneration correspond to that of ablated spiral ganglion neurons: ultimately the ablation of one neuron causes degeneration of a single inner hair cell within the closest radial segment of the afferent innervation. The elimination of spiral ganglion neurons by mechanical means does not affect hair cell survival. It is inferred that the laser pulse acts as a stimulus depolarizing the neuronal membrane of the spiral ganglion neurons and their radial fibers and causing the excitotoxic death of their synaptic sensory cells through excessive stimulation of the glutamatergic receptors. Reciprocal pre-and postsynaptic synapses between the afferent dendrites and inner hair cells in culture could possibly serve as entryways of the stimulus. The pathogenesis of this apparent transsynaptically-induced apoptotic death of inner hair cells will be further examined in culture.  相似文献   

4.
The guinea pig organ of Corti was studied using transmission electron microscopy, the second turn of the cochlea being examined at various ages between 20 days before birth and 30 days postnatal. Outer hair cells were examined at each of these ages. At all ages studied, the efferent (presynaptic) terminals are large and are packed with synaptic vesicles, whereas the afferent (postsynaptic) terminals are generally smaller, with a relatively small number of vesicles. During development, the subsynaptic cistern changes from a fragmented, diffuse profile extending over 50-70% of the length of the efferent contact zones, to a continuous, compact structure spanning neighbouring synapses. Synaptic vesicles in the efferent terminals are predominantly rounded in early development, flattened vesicles appearing postnatally. The synaptic bodies at afferent synapses do not change noticeably during development. Quantitative analysis revealed that the area of efferent terminals and the length of their active zone increase with increasing age, the same parameters decreasing in afferent terminals. Synaptic vesicles in the efferent terminals decrease in diameter, but remain constant in afferent terminals, with increasing age. The number of hair cell membrane invaginations decreases as development proceeds.  相似文献   

5.
I. Prigioni  G. Russo 《Amino acids》1995,9(3):265-273
Summary The action of glutamate on frog ampullar receptors was investigated to assess the potential role of this excitatory amino acid as an afferent transmitter in the hair cell system. Intracellular recordings from single afferent units in the isolated labyrinth revealed that glutamate and the glutamate receptor agonists, N-methyl-D-aspartic acid, quisqualic acid and kainic acid increase dose-dependently the frequency of the resting afferent discharge of EPSPs and spikes and produce long lasting depolarizations. After blocking synaptic transmission by using 5 mM Co2+, the same compounds elicited only depolarizations of amplitude comparable to those observed in normal saline. Quisqualic acid and kainic acid were much more potent than N-methyl-D-aspartic acid in increasing the frequency of afferent discharge and in causing axonal depolarizations. The depolarization caused by glutamate was reduced dose-dependently by the competitive non-NMDA receptor antagonist 6-cyano-7-nitroquinaxoline-2,3 dione and disappeared almost completely in Na+-free Ringer solution. These results are consistent with the hypothesis that glutamate is the afferent transmitter in vestibular organs and indicate that receptors mainly of the non-NMDA type are present not only at postsynaptic level but also in hair cells. Presynaptic glutamate receptors may function as autoreceptors controlling by a positive feed-back mechanism the release of the afferent transmitter.  相似文献   

6.
Summary The ultrastructure of the lateral-line neuromasts in the ratfish, Chimaera monstrosa is described. The neuromasts rest at the bottom of open grooves and consist of sensory, supporting, basal and mantle cells. Each sensory cell is equipped with sensory hairs consisting of a single kinocilium and several stereocilia. There are several types of sensory hair arrangement, and cells with a particular arrangement form patches within the neuromast. There are two types of afferent synapse. The most common afferent synapse has a presynaptic body and is typically associated with an extensive system of anastomosing tubules on the presynaptic side. When the tubules are absent, vesicles surround the presynaptic body. These synapses are often associated into synaptic fields, containing up to 35 synaptic sites. The second type of afferent synapse does not have a presynaptic body and is not associated with the tubular system. The afferent synapses of the second type do not form synaptic fields and are uncommon. The efferent synapses are either associated with a postsynaptic sac or more commonly with a strongly osmiophilic postsynaptic membrane. The accessory cells are similar to those in the acoustico-lateralis organs of other aquatic vertebrates. A possibility of movement of the presynaptic bodies and of involvement of the tubular system in the turnover of the transmitter is discussed. A comparison of the hair tuft types in the neuromasts of Ch. monstrosa with those in the labyrinth of the goldfish and of the frog is attempted.  相似文献   

7.
8.
Noise exposure at low levels or low doses can damage hair cell afferent ribbon synapses without causing permanent threshold shifts. In contrast to reports in the mouse cochleae, initial damage to ribbon synapses in the cochleae of guinea pigs is largely repairable. In the present study, we further investigated the repair process in ribbon synapses in guinea pigs after similar noise exposure. In the control samples, a small portion of afferent synapses lacked synaptic ribbons, suggesting the co-existence of conventional no-ribbon and ribbon synapses. The loss and recovery of hair cell ribbons and post-synaptic densities (PSDs) occurred in parallel, but the recovery was not complete, resulting in a permanent loss of less than 10% synapses. During the repair process, ribbons were temporally separated from the PSDs. A plastic interaction between ribbons and postsynaptic terminals may be involved in the reestablishment of synaptic contact between ribbons and PSDs, as shown by location changes in both structures. Synapse repair was associated with a breakdown in temporal processing, as reflected by poorer responses in the compound action potential (CAP) of auditory nerves to time-stress signals. Thus, deterioration in temporal processing originated from the cochlea. This deterioration developed with the recovery in hearing threshold and ribbon synapse counts, suggesting that the repaired synapses had deficits in temporal processing.  相似文献   

9.
Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2μ (AP‐2μ) is required for release site replenishment and hearing. We show that hair cell‐specific disruption of AP‐2μ slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane‐proximal vesicles and intact endocytic membrane retrieval. Sound‐driven postsynaptic spiking was reduced in a use‐dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosome‐like vacuoles, fewer clathrin‐coated endocytic intermediates, and vesicle depletion of the membrane‐distal synaptic ribbon in AP‐2μ‐deficient IHCs, indicating a further role of AP‐2μ in clathrin‐dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP‐2 sorts its IHC‐cargo otoferlin. We propose that binding of AP‐2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP‐2 in synaptic vesicle reformation.  相似文献   

10.
The auditory inner hair cell (IHC) ribbon synapse operates with an exceptional temporal precision and maintains a high level of neurotransmitter release. However, the molecular mechanisms underlying IHC synaptic exocytosis are largely unknown. We studied otoferlin, a predicted C2-domain transmembrane protein, which is defective in a recessive form of human deafness. We show that otoferlin expression in the hair cells correlates with afferent synaptogenesis and find that otoferlin localizes to ribbon-associated synaptic vesicles. Otoferlin binds Ca(2+) and displays Ca(2+)-dependent interactions with the SNARE proteins syntaxin1 and SNAP25. Otoferlin deficient mice (Otof(-/-)) are profoundly deaf. Exocytosis in Otof(-/-) IHCs is almost completely abolished, despite normal ribbon synapse morphogenesis and Ca(2+) current. Thus, otoferlin is essential for a late step of synaptic vesicle exocytosis and may act as the major Ca(2+) sensor triggering membrane fusion at the IHC ribbon synapse.  相似文献   

11.
Hair cell afferent synapses   总被引:1,自引:0,他引:1  
This review will cover advances in the study of hair cell afferent synaptic function occurring between 2005 and 2008. During this time, capacitance measurements of vesicular fusion have continued to be refined, optical methods have added insights regarding vesicle trafficking, and paired intracellular recordings have established the transfer function of the afferent synapse at high resolution. Further, genes have been identified with forms of deafness known as auditory neuropathy, and their role in afferent signaling explored in mouse models. With these advances, our view of the hair cell afferent synapse has continued to be refined, and surprising properties have been revealed that emphasize the unique role of this structure in neural function.  相似文献   

12.
Intracellular recording was used to investigate the modulatory effects of serotonin and octopamine on the identified synapses between filiform hair sensory afferents and giant interneurons in the first instar cockroach, Periplaneta americana. Serotonin at 10(-4) mol l(-1) to 10(-3) mol l(-1) reduced the amplitude of the lateral axon-to-ipsilateral giant interneuron 3 excitatory postsynaptic potentials. and octopamine at 10(-4) mol l(-1) increased their amplitude. Similar effects were seen on excitatory postsynaptic potentials in dorsal giant interneuron 6. Several lines of evidence suggest that both substances modulate the amplitude of excitatory postsynaptic potentials by acting presynaptically, rather than on the postsynaptic neuron. The fitting of simple binomial distributions to the postsynaptic potential amplitude histograms suggested that, for both serotonin and octopamine, the number of synaptic release sites was being modulated. Secondly, the amplitudes of miniature excitatory postsynaptic potentials recorded in the presence of tetrodotoxin were unaffected by either modulator. Finally, recordings from contralateral giant interneuron 3, which has two identifiable populations of synaptic inputs, showed that each modulator had a more pronounced effect on excitatory postsynaptic potentials evoked by the lateral axon than on those evoked by the medial axon. Immunocytochemistry confirmed that neuropilar processes containing serotonin are present in close proximity to these synapses.  相似文献   

13.
Acetylcholine released from efferent neurons in the cochlea causes inhibition of mechanosensory hair cells due to the activation of calcium-dependent potassium channels. Hair cells are known to have large-conductance, “BK”-type potassium channels associated with the afferent synapse, but these channels have different properties than those activated by acetylcholine. Whole-cell (tight-seal) and cell-attached patch-clamp recordings were made from short (outer) hair cells isolated from the chicken basilar papilla (cochlea equivalent). The peptides apamin and charybdotoxin were used to distinguish the calcium-activated potassium channels involved in the acetylcholine response from the BK-type channels associated with the afferent synapse. Differential toxin blockade of these potassium currents provides definitive evidence that ACh activates apamin-sensitive, “SK”-type potassium channels, but does not activate carybdotoxin-sensitive BK channels. This conclusion is supported by tentative identification of small-conductance, calcium-sensitive but voltage-insensitive potassium channels in cell-attached patches. The distinction between these channel types is important for understanding the segregation of opposing afferent and efferent synaptic activity in the hair cell, both of which depend on calcium influx. These different calcium-activated potassium channels serve as sensitive indicators for functionally significant calcium influx in the hair cell. Accepted: 12 August 1999  相似文献   

14.
W M Fu  M M Poo 《Neuron》1991,6(5):837-843
Extracellular application of ATP, a substance co-stored and co-released with acetylcholine in peripheral nervous systems, potentiates the spontaneous secretion of acetylcholine at developing neuromuscular synapses in Xenopus cell culture, as shown by a marked increase in the frequency of spontaneous synaptic currents recorded in the postsynaptic muscle cell. The effect of ATP is apparently mediated by the activation of cytosolic protein kinases and requires the influx of Ca2+ through the plasma membrane. Since spontaneous acetylcholine release is known to regulate the development of contractile properties of the postsynaptic muscle cell, extracellular ATP may serve as a positive trophic factor at developing neuromuscular synapses.  相似文献   

15.
Information transfer within neuronal networks requires the precise coordination of distinct neuronal populations within a given circuit. Evidence from a variety of central pathways indicates that such coordination is mediated in part by the ability of neurons to differentially regulate release properties at functionally divergent presynaptic elements along their individual axons according to the identity of the postsynaptic cell being innervated. Recent findings have revealed the cellular mechanisms by which central afferents modify release properties at individual presynaptic sites independent of neighboring terminals. Such autonomy of presynaptic regulation enables target-cell-dependent short-term and long-term synaptic plasticity and ensures that distinct features of afferent activity are relayed to divergent target-cell populations.  相似文献   

16.
Apart from their primary function as balance sensors, Hermissenda hair cells are presynaptic neurons involved in the Ca(2+)-dependent neuronal plasticity in postsynaptic B photoreceptors that accompanies classical conditioning. With a view to beginning to understand presynaptic mechanisms of plasticity in the vestibulo-visual system, a locus for conditioning-induced neuronal plasticity, outward currents that may govern the excitability of hair cells were recorded by means of a whole-cell patch-clamp technique. Three K+ currents were characterized: a 4-aminopyridine-sensitive transient outward K+ current (IA), a tetraethyl ammonium-sensitive delayed rectifier K+ current (IK,V), and a Ca(2+)-activated K+ current (IK,Ca). IA activates and decays rapidly; the steady-state activation and inactivation curves of the current reveal a window current close to the apparent resting voltage of the hair cells, suggesting that the current is partially activated at rest. By modulating firing frequency and perhaps damping membrane oscillations, IA may regulate synaptic release at baseline. In contrast, IK,V and IK,Ca have slow onset and exhibit little or no inactivation. These two K+ currents may determine the duration of the repolarization phase of hair-cell action potentials and hence synaptic release via Ca2+ influx through voltage-gated Ca2+ channels. In addition, IK,Ca may be responsible for the afterhyperpolarization of hair cell membrane voltage following prolonged stimulation.  相似文献   

17.
The cercus of the first instar cockroach, Periplaneta americana, bears two filiform hairs, lateral (L) and medial (M), each of which is innervated by a single sensory neuron. These project into the terminal ganglion of the CNS where they make synaptic connections with a number of ascending interneurons. We have discovered mutant animals that have more hairs on the cercus; the most typical phenotype, called "Space Invader" (SI), has an extra filiform hair in a proximo-lateral position on one of the cerci. The afferent neuron of this supernumerary hair (SIN) "invades the space" occupied by L in the CNS and makes similar synaptic connections to giant interneurons (GIs). SIN and L compete for these synaptic targets: the size of the L EPSP in a target interneuron GI3 is significantly reduced in the presence of SIN. Morphometric analysis of the L afferent in the presence or absence of SIN shows no anatomical concomitant of competition. Ablation of L afferent allows SIN to increase the size of its synaptic input to GI3. Less frequently in the mutant population, we find animals with a supernumerary medical (SuM) sensillum. Its afferent projects to the same neuropilar region as the M afferent, makes the same set of synaptic connections to GIs, and competes with M for these synaptic targets. The study of these competitive interactions between identified afferents and identified target interneurons reveals some of the dynamic processes that go on in normal development to shape the nervous system.  相似文献   

18.
The Hebb synapse has been postulated to serve as a mechanism subserving both regulation of synaptic strength in the adult nervous system (long-term potentiation and depression) and developmental activity-dependent plasticity. According to this model, pre- and postsynaptic temporal concordance of activity results in strengthening of connections, while discordant activity results in synapse weakening. Evidence is presented that proteases and protease inhibitors may be involved in modification of synaptic strength. This leads to a modification of the Hebb assumptions, namely that postsynaptic activity results in protease elaboration with a consequent general reduction of synaptic connections to the active postsynaptic element. Further, presynaptic activity, if strong enough, induces local release of a protease inhibitor, such as protease nexin I, which neutralizes proteolytic activity and produces a relative preservation of the active input. This formulation produces many of the effects of the classical Hebbian construction, but the protease/inhibitor model suggests additional specific mechanistic features for activity-dependent plasticity. 1994 John Wiley & Sons, Inc.  相似文献   

19.
Caudal hair cell impulses cause postsynaptic inhibition of ipsilateral type B photoreceptors in the snail Hermissenda. This inhibition is shown to be GABAergic according to a number of criteria. HPLC, mass spectrophotometric, and immunocytochemical techniques demonstrated the presence of GABA in the hair cells and their axons. GABA agonists and antagonists mimic and block the synaptic effect in a manner consistent with endogenous GABAergic transmission. Other properties, including I-V relations, conductance changes and reversal potentials, are comparable for exogenous GABA responses and endogenous effects of the hair cell impulses. This inhibitory synapse has been found to undergo a long-lasting transformation into an excitatory synapse if GABA release is paired with post-synaptic depolarization. GABA, via GABAA and GABAB receptors in the B cell, causes the opening of calcium sensitive chloride and potassium channels that leads to the post-synaptic hyperpolarization. GABA also induces a long-lasting intracellular calcium elevation at the terminal branches of the B cell that greatly outlasts the voltage responses. Synaptic transformation induced by pairings is caused by a decrease in both GABA induced chloride and potassium conductances in the post-synaptic B cell, as well as a significant prolongation of the intracellular calcium accumulation in the B cell's terminal axonal branches.  相似文献   

20.
The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 457–466, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号