首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sibley and Ahlquist compared the single-copy nuclear DNA sequences of the hominoid primates using DNA-DNA hybridization. From this data set they estimated a phylogeny that clusters man and chimpanzees using a distance Wagner procedure. However, no assessment of statistical confidence in this estimated phylogeny was made, despite the fact that their data set contains internal inconsistencies concerning the correct branching order. This paper presents a modification of Pielou's Q- statistic that allows one to make nonparametric tests of phylogenetic relationship from distance data. The results of this analysis indicate that the estimated phylogeny of Sibley and Ahlquist is without statistical significance owing to the internal inconsistencies of the data set. A survey and additional analyses of other types of molecular data indicate that the phylogeny that clusters chimpanzees and gorillas and has the human lineage splitting off earlier is statistically consistent with all the molecular data (including the DNA-DNA hybridization data), whereas the phylogeny estimated by Sibley and Ahlquist can be rejected at the 5% level using the data on restriction- endonuclease sites in the mitochondrial genome.   相似文献   

2.
3.
The avian clade Passerida was first identified based on DNA-DNA hybridization data [C.G. Sibley, J.E. Ahlquist, Phylogeny and Classification of Birds, 1990, Yale University Press, New Haven, CT]. Monophyly of the Passerida, with the exception of a few taxa, has later been corroborated in several studies; however, the basal phylogenetic relationships have remained poorly understood. In this paper, we review the current knowledge of the phylogenetic relationships within Passerida and present a new phylogeny based on three nuclear introns (myoglobin intron 2, ornithine decarboxylase introns 6 and 7, as well as beta-fibrinogen intron 5). Our findings corroborate recent molecular hypotheses, but also identify several hitherto unrecognized relationships.  相似文献   

4.
Single-copy DNA divergence among 23 populations of cave crickets belonging to two genera (Euhadenoecus and Hadenoecus) has been determined by DNA-DNA hybridization employing the TEACL method. These same populations have been studied for allozyme variation (Caccone and Sbordoni, 1987). In addition, a European relative (Dolichopoda laetitiae) has been included as an outgroup for rooting the phylogeny. One of the most remarkable findings is the large degree of DNA divergence among these species and populations. A ΔTm of up to 5°C has been found between populations of the same species; even further divergence is indicated by a lowered normalized percentage of reassociation. A phylogeny was constructed and tested for synchrony of rates, i.e., a molecular clock. Statistically, we could not reject the clock hypothesis. Attempts to calibrate the clock led to the conclusion that these insects are among the fastest evolving (with respect to single-copy DNA) groups yet studied—at least as fast as Drosophila and sea urchins—where a ΔTm of 1°C indicates 0.5 to 1.5 MY since the last common ancestor. In general, the phylogeny derived from the DNA data agrees with that derived from isozymes. Nei's D and ΔTm are correlated; in this group a D of 0.1 corresponds to a ΔTm of about 1.5°C. This indicates that, relative to total single-copy DNA, the protein-coding regions of the genome are slowly evolving.  相似文献   

5.
The value of biodiversity lies in its option value for the future, the greater the complement of contemporary biodiversity conserved today, the greater the possibilities for future biodiversity because of the diverse genetic resource needed to ensure continued evolution in a changing and uncertain world. From this perspective, biodiversity option value can be equated with richness in the different features expressed by species. An individual species of greater value is one contributing more novel features to a given subset. The feature diversity of species and communities is difficult to estimate directly, but can be predicted by the phylogenetic relationships among the species. The ‘Phylogenetic Diversity’ measure (PD) (Faith, 1992a) estimates the relative feature diversity of any nominated set of species by the sum of the lengths of all those branches spanned by the set. These branch lengths reflect patristic or path‐length distances. This study first reviews and expands on some of the properties of PD, and develops simple modifications of the measure (δnPD and enPD) to enable capture of both the phylogenetic relatedness of species and their abundances in each sample. Then the application of PD, δnPD and enPD to a wide range of conservation and resource management issues is demonstrated using avian case studies. Supertree construction procedures (matrix representation using parsimony analysis; average consensus) were used to combine the extensive DNA‐DNA hybridization tree of Sibley & Ahlquist (1990) with numerous, recently published phylogenetic reconstructions to derive a phylogenetic tree for the global avian fauna. Using this supertree as a systematic framework, the utility of PD was demonstrated in four case studies: (i) state of the environment reporting, with changes in avian faunas resulting from extinctions quantified as indicators of the state of biodiversity at Global, New Zealand and Waikato region scales, and changes in available habitat quantified as indicators of pressures on biodiversity in the Waikato region; (ii) setting priorities for threatened species management, with PD as a measure of option value integrated with information on survivorship expectations to develop a ranking among threatened New Zealand forest bird species; (iii) monitoring biotic response to management, with data from 5‐minute counts used to analyse changes in forest bird communities under three management regimes in New Zealand; and (iv) selection of indicator species, with PD used to objectively identify subsets of species in the Global, New Zealand and Waikato avian faunas that comprise a high proportion of the option value in those faunas.  相似文献   

6.
Summary Analysis of the expanded data set of Sibley and Ahlquist (1987) on primate phylogeny using a maximum likelihood mixed model analysis of variance method shows that there is significant evidence for resolving theHomo-Pan-Gorilla trifurcation in favor of aHomo-Pan clade. The resulting tree is close to that estimated by Sibley and Ahlquist (1984). The mixed model can be used to test a number of hypotheses about the existence of components of variance and the linearity of the relationship between branch length and expected distance. No evidence is found that there is a variance component for extract, or for the individual from which the extract was taken. A variance component for experiment does seem to exist, presumably arising as a result of error of measurement of the common standard from which all values in the same experiment were substracted. There is significant evidence that the relationship between total branch length between species and their expected distances is nonlinear, or else that the measurement error on larger distances is greater than on smaller ones. Allowing for the nonlinearity might cause one to infer the time of distant common ancestors as less remote than the measured hybridization values would imply if used directly.  相似文献   

7.
Using DNA–DNA hybridization, we have determined the degree of single-copy DNA (scDNA) divergence among eight species of the Drosophila obscura group. These include Old World and New World species as well as members of two subgroups. Contrary to classical systematics, members of the affinis subgroup are more closely related to American members of the obscura subgroup than are Old World species. The Old World species are not a monophyletic group. The degree of scDNA divergence among species is not necessarily correlated with morphology, chromosomal divergence, or ability to form hybrids. A unique pattern of hybrid formation was found: species separated by a ΔTm of 6.5°C can form hybrids whereas species separated by a ΔTm of 2.5°C cannot. As with other groups of Drosophila, the obscura group has discrete parts of the genome evolving at very different rates. The slow evolving fraction of the nuclear genome is evolving at about the same rate as mitochondrial DNA. The additional scDNA divergence accompanying the step from partial reproductive isolation (between North American pseudoobscura and the isolated Bogotà population) to full isolation is very small. The resolution of the technique was challenged by five closely related taxa with a maximum ΔTm of 2.5°C separating them; the taxa were unambiguously resolved and the “correct” phylogeny recovered. Finally, there is some indication that scDNA in the obscura group may be evolving considerably slower than in the melanogaster subgroup.  相似文献   

8.
Phylogenetic relationships among the families of passerine birds have been the subject of many debates. These relationships have been investigated by using a number of different character sets, including morphology, proteins, DNA-DNA hybridization, and mitochondrial DNA gene sequences. Our objective was to examine the phylogenetic relationships of a set of passerine songbirds (Oscines) and to test the taxonomic relationships proposed by. We sequenced 1403 aligned bases encompassing the mitochondrial transfer-RNA-Valine and 16S ribosomal RNA genes in 27 species from 14 families (including a Suboscine outgroup). Our results differ in significant ways from the superfamily designations of Sibley and Ahlquist by questioning the monophyly of the Sylvioidea and by placing the Regulidae in the Corvoidea.  相似文献   

9.
This study presents new comparative sequence data from the nuclear RAG-1 gene for an increased taxon sample in order to investigate phylogenetic relationships among a diverse songbird superfamily, the Muscicapoidea, which has variously included the waxwings, silky flycatchers, Palm Chat, dippers, starlings, mockingbirds, thrushes, chats, and Old World flycatchers. At the same time, our results provide a test of the often-cited relationships inferred from the phenetic studies of Sibley and Ahlquist [Phylogeny and Classification of Birds: A Study in Molecular Evolution. Yale University Press, New Haven, 1990] using DNA hybridization distances. Nuclear DNA sequences confirm the monophyly of the "core muscicapoid" group, as defined by Barker et al. [Proc. R. Soc. Lond. B 269 (2002) 295] and also support the sister-group relationship of the Sturnidae and Mimidae, on the one hand, and the large-bodied thrushes (Turdini)+the Old World flycatchers and robins, on the other. The results of the phylogenetic analysis allow preliminary inferences about muscicapoid biogeographic history.  相似文献   

10.
In this paper we attempt to investigate relationships between the amount of genetic divergence in nuclear genes and the degree of morphological differentiation for different sets of characters in Dolichopoda cave crickets. Six populations representing five Dolichopoda species from Central and Southern Italy have been studied. The overall genetic divergence at nuclear genes was estimated both by single copy DNA-DNA hybridization and allozyme frequencies at 26 loci. Euclidean distances for two multivariate sets of morphometric variables: one describing body and appendage morphology, the other male epiphallus shape. Results showed a close agreement between the branching patterns of ΔTm values from DNA hybridization and Nei's allozyme distance values. On the other hand, patterns of morphological divergence revealed independent trends, although the branching pattern based on epiphallus morphology matched to some extent the phylogenies inferred from molecular data. The relative value of molecular and morphological characters as reliable phylogenetic tracers was evaluated in relation to their dependence on evolutionary factors. Implications of these findings on the calibration of molecular clocks are also discussed. The absolute rate of molecular change based on scDNA was estimated to be at least 0.98% divergence/my/lineage. This result is in agreement with calibrations attempted on other insects. Estimates of time of divergence based on allozymes (Nei's D) were highly consistent with the estimate from geological data.  相似文献   

11.
A Gram-negative, non-mobile, polar single flagellum, rod-shaped bacterium WZBFD3-5A2T was isolated from a wheat soil subjected to herbicides for several years. Cells of strain WZBFD3-5A2T grow optimally on Luria-Bertani agar medium at 30?°C in the presence of 0–4.0?% (w/v) NaCl and pH 8.0. 16S rRNA gene sequence analysis revealed that strain WZBFD3-5A2T belongs to the genus Pseudomonas. Physiological and biochemical tests supported the phylogenetic affiliation. Strain WZBFD3-5A2T is closely related to Pseudomonas nitroreducens IAM1439T, sharing 99.7?% sequence similarity. DNA–DNA hybridization experiments between the two strains showed only moderate reassociation similarity (33.92?±?1.0?%). The DNA G+C content is 62.0?mol%. The predominant respiratory quinine is Q-9. The major cellular fatty acids present are C16:0 (28.55?%), C16:1ω6c or C16:1ω7c (20.94?%), C18:1ω7c (17.21?%) and C18:0 (13.73?%). The isolate is distinguishable from other related members of the genus Pseudomonas on the basis of phenotypic and biochemical characteristics. From the genotypic, chemotaxonomic and phenotypic data, it is evident that strain WZBFD3-5A2T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas nitritereducens sp. nov. is proposed. The type strain is WZBFD3-5A2T (=CGMCC 1.10702T?=?LMG 25966T).  相似文献   

12.
A Gram-stain positive, aerobic, non-motile, endospore-forming and rod-shaped strain (THG-NT9T) was isolated from a green tea sample. Growth occurred at 20–45 °C (optimum 28–35 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–2.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-NT9T were identified as Scopulibacillus daqui DSM 28236T (98.6%), Scopulibacillus darangshiensis DSM 19377T (97.4%), Pullulanibacillus pueri CGMCC 1.12777T (96.7%) and Pullulanibacillus camelliae CGMCC 1.15371T (96.3%). The DNA G?+?C content of strain THG-NT9T was determined to be 47.5 mol %. DNA–DNA hybridization values between strain THG-NT9T and S. daqui DSM 28236T, S. darangshiensis DSM 19377T, P. pueri CGMCC 1.12777T, P. camelliae CGMCC 1.15371T and Pullulanibacillus naganoensis DSM 10191T were 41.3?±?0.1 (39.4?±?0.4% reciprocal analysis), 39.1?±?0.1 (37.3?±?0.1%), 21.4?±?0.7 (20.1?±?0.3%), 20.7?±?0.1 (20.1?±?0.4%) and 12.1?±?0.2% (8.3?±?0.2%). The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unidentified lipids. The quinone was identified as MK-7. The major fatty acids were C18:3 ω7c, iso-C15:0, iso-C16:0, iso-C17:0 and anteiso-C17:0. The cell wall type was determined to be A1γ peptidoglycan with meso-diaminopimelic acid as the diagnostic diamino acid plus alanine and glutamic acid and glucose as the cell wall sugar. On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-NT9T represents a novel species of the genus Scopulibacillus, for which the name Scopulibacillus cellulosilyticus sp. nov. is proposed. The type strain is THG-NT9T (=?KCTC 33918T?=?CGMCC 1.16305T).  相似文献   

13.
Ongoing hybridization and retained ancestral polymorphism in rapidly radiating lineages could mask recent cladogenetic events. This presents a challenge for the application of molecular phylogenetic methods to resolve differences between closely related taxa. We reanalyzed published genotyping‐by‐sequencing (GBS) data to infer the phylogeny of four species within the Ophrys sphegodes complex, a recently radiated clade of orchids. We used different data filtering approaches to detect different signals contained in the dataset generated by GBS and estimated their effects on maximum likelihood trees, global FST and bootstrap support values. We obtained a maximum likelihood tree with high bootstrap support, separating the species by using a large dataset based on loci shared by at least 30% of accessions. Bootstrap and FST values progressively decreased when filtering for loci shared by a higher number of accessions. However, when filtering more stringently to retain homozygous and organellar loci, we identified two main clades. These clades group individuals independently from their a priori species assignment, but were associated with two organellar haplotype clusters. We infer that a less stringent filtering preferentially selects for rapidly evolving lineage‐specific loci, which might better delimit lineages. In contrast, when using homozygous/organellar DNA loci the signature of a putative hybridization event in the lineage prevails over the most recent phylogenetic signal. These results show that using differing filtering strategies on GBS data could dissect the organellar and nuclear DNA phylogenetic signal and yield novel insights into relationships between closely related species.  相似文献   

14.

In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1 ω7c/iso-C15:0 2-OH). The DNA G?+?C content of the type strain is 68.8?mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5?Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (=?LMG 32,345T?=?NCAIM B.02664T).

  相似文献   

15.
Two halophilic archaeal strains, R30T and tADLT, were isolated from an aquaculture farm in Dailing, China, and from Deep Lake, Antarctica, respectively. Both have rod-shaped cells that lyse in distilled water, stain Gram-negative and form red-pigmented colonies. They are neutrophilic, require >120?g/l NaCl and 48–67?g/l MgCl2 for growth but differ in their optimum growth temperatures (30?°C, tADLT vs. 40?°C, R30T). The major polar lipids were typical for members of the Archaea but also included a major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). The 16S rRNA gene sequences of the two strains are 97.4?% identical, show most similarity to genes of the family Halobacteriaceae, and cluster together as a distinct clade in phylogenetic tree reconstructions. The rpoB′ gene similarity between strains R30T and tADLT is 92.9?% and less to other halobacteria. Their DNA G?+?C contents are 62.4–62.9?mol?% but DNA–DNA hybridization gives a relatedness of only 44?%. Based on phenotypic, chemotaxonomic and phylogenetic properties, we describe two new species of a novel genus, represented by strain R30T (=?CGMCC 1.10593T?=?JCM 17270T) and strain tADLT (=?JCM 15066T?=?DSMZ 22187T) for which we propose the names Halohasta litorea gen. nov., sp. nov. and Halohasta litchfieldiae sp. nov., respectively.  相似文献   

16.
A motile, curved to twisted rod-shaped aerobic bacterium, designated strain 04SU4-PT, was isolated from freshwater collected from the Woopo wetland (Republic of Korea). Cells were observed to be Gram-stain negative, catalase negative and oxidase positive. The major fatty acids (>10 % of the total) were identified as C19:0 ω8c cyclo (24.6 %), C16:0 (24.3 %) and C18:1 ω7c (13.1 %). The DNA G+C content was determined to be 71.5 mol%. The major polar lipids were identified as phosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and one unknown aminolipid. The major ubiquinone was determined to be Q-10. A phylogenetic tree based on 16S rRNA gene sequences showed that strain 04SU4-PT forms an evolutionary lineage within the genus Dongia and its nearest neighbour is Dongia mobilis LM22T (98.0 % sequence similarity). Genomic DNA–DNA hybridization of stain 04SU4-PT with D. mobilis LM22T showed relatedness of only 34.2 %. The phenotypic characteristics indicate the strain 04SU4-PT can be distinguished from the sole member of the genus Dongia. On the basis of the data presented in this study, strain 04SU4-PT represents a novel species, for which the name Dongia rigui is proposed. The type strain is 04SU4-PT (KCTC 23341T = JCM 17521T).  相似文献   

17.
Phylogenetic relationships of the lyrebirds are investigated using DNA sequence data. The aligned data matrix consists of 4027 bp obtained from three nuclear genes (c-myc, RAG-1 and myoglobin intron II) and two mitochondrial genes (cytochrome b and ND2). Both maximum-likelihood and parsimony analyses show that the lyrebirds unambiguously belong to the oscine radiation, and that they are the sister taxon to all other oscines. The results do not support the suggestion based on DNA-DNA hybridization data (Sibley and Ahlquist, 1990) that the treecreepers and bowerbirds are part of the lyrebird clade. Nevertheless, treecreepers and bowerbirds are sister taxa to all other oscines (except the lyrebirds) and may constitute a monophyletic group, although bootstrap support values for this clade are low. A major disagreement between the present analysis and that based on DNA-DNA hybridization data is that the Corvida (sensu Sibley and Ahlquist, 1990) and Passerida are not reciprocally monophyletic, as we find the latter group be nested within the Corvida. Also, the superfamilies Meliphagoidea and Corvoidea sensu, are not recovered as monophyletic in the present study. Within the oscine radiation, all taxa belonging to the earliest splits are confined to the Australo-Papuan region. This suggests strongly that the origins and early radiation of the oscines occurred in the southern supercontinent Gondwana. A new classification of the major groups of passerines is presented following from the results presented in the present study, as well as those published recently on analyses of sequence data from the nuclear c-myc and RAG-1 genes (Ericson et al., 2002; Irestedt et al., 2001).  相似文献   

18.
The phylogeny of the hominoid primates,as indicated by DNA-DNA hybridization   总被引:24,自引:0,他引:24  
Summary The living hominoid primates are Man, the chimpanzees, the Gorilla, the Orangutan, and the gibbons. The cercopithecoids (Old World monkeys) are the sister group of the hominoids. The composition of the Hominoidea is not in dispute, but a consensus has not yet been reached concerning the phylogenetic branching pattern and the dating of divergence nodes. We have compared the single-copy nuclear DNA sequences of the hominoid genera using DNA-DNA hybridization to produce a complete matrix of delta T50H values. The data show that the branching sequence of the lineages, from oldest to most recent, was: Old World monkeys, gibbons, Orangutan, Gorilla, chimpanzees, and Man. The calibration of the delta T50H scale in absolute time needs further refinement, but the ranges of our estimates of the datings of the divergence nodes are: Cercopithecoidea, 27–33 million years ago (MYA); gibbons, 18–22 MYA; Orangutan, 13–16 MYA; Gorilla, 8–10 MYA; and chimpanzees-Man, 6.3–7.7 MYA.  相似文献   

19.
A strain of genus Pseudomonas, LYBRD3-7T was isolated from long-term sulfonylurea herbicides applied wheat-field soil in Linying located in Henan province of China. This strain is a strictly aerobic and Gram-negative short rod-shaped bacterium with single flagellum. Phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this isolate as a member of Pseudomonas, and most closely to Pseudomonas tuomuerensis CGMCC 1.1365T (97.1?%) and P. alcaligenes IAM12411T (97.1?%). Morphological characters and chemotaxonomic data confirmed the affiliation of strain LYBRD3-7T to the genus Pseudomonas. The results of phylogenetic analysis, physiological and biochemical studies, and DNA–DNA hybridization allowed the differentiation of genotype and phenotype between strain LYBRD3-7T and the phylogenetic closest species with valid names. The name proposed for the new species is Pseudomonas linyingensis sp. nov. The type strain is LYBRD3-7T (=CGMCC 1.10701T? =LMG 25967T).  相似文献   

20.
Young species complexes that are widespread across ecologically disparate regions offer important insights into the process of speciation because of their relevance to how local adaptation and gene flow influence diversification. We used mitochondrial DNA and up to 28 152 genomewide single nucleotide polymorphisms from polytypic barking frogs (Craugastor augusti complex) to infer phylogenetic relationships and test for the signature of introgressive hybridization among diverging lineages. Our phylogenetic reconstructions suggest (i) a rapid Pliocene–Pleistocene radiation that produced at least nine distinct lineages and (ii) that geographic features of the arid Central Mexican Plateau contributed to two independent northward expansions. Despite clear lineage differentiation (many private alleles and high between‐lineage FST scores), D‐statistic tests, which differentiate introgression from ancestral polymorphism, allowed us to identify two putative instances of reticulate gene flow. Partitioned D‐statistics provided evidence that these events occurred in the same direction between clades but at different points in time. After correcting for geographic distance, we found that lineages involved in hybrid gene flow interactions had higher levels of genetic variation than independently evolving lineages. These findings suggest that the nature of hybrid compatibility can be conserved overlong periods of evolutionary time and that hybridization between diverging lineages may contribute to standing levels of genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号