首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
Considerable attention has been focused on the role of corticotropin-releasing factor (CRF) in neuropsychiatric disorders and neurodegenerative diseases including epilepsy. Therefore, in the present study, we investigated the temporal and spatial alteration of CRF receptor in the gerbil hippocampal complex in order to characterize the possible changes and associations with different sequelae of spontaneous seizure in these animals. Thirty minutes postictal, a decline in CRF receptor immunoreactivity was observed in the granule cells and hilar neurons. In the subiculum, CRF receptor immunoreactivity was also significantly decreased at this time point. Twenty-four hours after seizure onset, the immunoreactivity in these regions recovered to the pre-seizure level. Moreover, 30 min after seizure in the entorhinal cortex, the density of CRF receptor immunoreactivity began to decrease, particularly in the layers II and III, compared to pre-seizure group. Nevertheless, 24h after seizure onset, CRF receptor immunodensity had recovered to its seizure-sensitive (SS) level. These results suggest that altered CRF receptor expression in the hippocampal complex may affect tissue excitability and seizure activity in SS gerbils.  相似文献   

2.
Previous studies have reported that calbindin D-28k (CB), a calcium-binding protein, containing neurons in the hippocampus play an important role in hippocampal excitability in epilepsy, because CB modulates the free calcium ion during seizure. Hence, in the present study, we investigated changes of CB expression in the hippocampus and its association in the Mongolian gerbil to identify roles of CB in epileptogenesis. CB immunoreactivity in the hippocampus was significantly lower in the pre-seizure group of seizure sensitive (SS) gerbils as compared with those seen in the seizure resistant (SR) gerbils. The distribution of CB immunoreactivity in the hippocampus showed significant difference after seizure on-set in SS gerbils. CB immunoreactivity in the hippocampal CA1, CA2 areas, and subiculum was lowest at 3h after seizure on-set; thereafter, the immunoreactivity became to increase to 12h after seizure on-set. Mossy fibers, Schaffer collaterals and dentate granule cells showed the highest CB immunoreactivity at 3h after seizure on-set; thereafter, the immunoreactivity became to decrease. In the case of the intrinsic and output connections of the hippocampus, a rapid decrease of CB serves an inhibitory function, which regulates the seizure activity and output signals from the hippocampus.  相似文献   

3.
Lee SB  Oh YJ  Chung JK  Jeong JH  Lee SD  Park DK  Park KH  Ko JS  Kim DS 《BMB reports》2011,44(9):566-571
Although the phospholipase C (PLC)β-1 isoform is associated with spontaneous seizure and distinctively expressed in the telencephalon, the distribution of PLCβ-1 expression in the epileptic gerbil hippocampus remains controversial. Therefore, we determined whether PLCβ-1 is associated with spontaneous seizure in an animal model of genetic epilepsy. In the present study, PLCβ-1 immunoreactivity was down-regulated in seizure-sensitive (SS) gerbils more than in seizure-resistant (SR) gerbils. The expression of PLCβ-1 within calretinin (CR)- positive neurons was rarely detected within the dentate hilar region of SS gerbils. PLCβ-1 immunoreactivity in the hippocampus was significantly elevated as compared to that in pre-seizure SS gerbil 3 h post-ictal. These findings suggest that alterations in PLCβ-1 immunoreactivity in the SS gerbil hippocampus may be closely related to the epileptic state of the gerbil brain and transiently elevated PLCβ-1 protein levels following seizure episodes. Such alterations may be compensatory responses in the SS gerbil hippocampus.  相似文献   

4.
We investigated the temporal alterations of adrenocorticotropic hormone (ACTH) immunoreactivity in the hippocampus after seizure onset. Expression of ACTH was observed within interneurons in the pre-seizure group of seizure sensitive gerbils, whereas its immunoreactivities were rarely detected in seizure resistant gerbil. Three hr after the seizure, ACTH immunoreactivity was significantly increased in interneurons within all hippocampal regions. On the basis of their localization and morphology through immunofluorescence staining, these cells were identified as GABAA α1-containing interneurons. At the 12 hr postictal period, ACTH expression in these regions was down-regulated, in a similar manner to the pre-seizure group of gerbils. These findings support the increase in ACTH synthesis that contributes to a reduction of corticotrophin-releasing factor via the negative feedback system which in turn provides an opportunity to enhance the excitability of GABAergic interneurons. Therefore, ACTH may play an important role in the reduction of excitotoxicity in all hippocampal regions. [BMB Reports 2013; 46(2): 80-85]  相似文献   

5.
It is well established that GABA degradation may play a key role in epileptogenesis. However, whether or not the expression of GABA-transaminase (GABA-T), which catalyzes GABA degradation and participates in the neuronal metabolism via GABA shunt, changes chronologically after on-set of seizure remains to be clarified. To identify the change of GABA-T expression in seizure, GABA-T expression in the gerbil hippocampus, associated with different sequelae of spontaneous seizures, was investigated. The distribution pattern of GABA-T immunoreactive neurons in the hippocampus between the seizure-resistant and pre-seizure group of seizure sensitive gerbils was similar. Interestingly, at 30 min postictal, the enhancement of GABA-T immunoreactivity in the perikarya was apparently observed. This contrasted with the decline in GABA-T immunoreactivity in the granular and pyramidal layer. At 12-24 h postictal, GABA-T immunoreactivity in the hilar neurons had declined significantly. However, the GABA-T immunoreactivity in the granular layer increased. These findings suggest that in the gerbil, the alteration in GABA-T expressions may play an important role in the self-recovery mechanism from seizure attack via both GABA degradation and regulation of neuronal metabolism.  相似文献   

6.
It is well established that GABA degradation may play a key role in epileptogenesis. However, whether or not the expression of GABA-transaminase (GABA-T), which catalyzes GABA degradation and participates in the neuronal metabolism via GABA shunt, changes chronologically after on-set of seizure remains to be clarified. To identify the change of GABA-T expression in seizure, GABA-T expression in the gerbil hippocampus, associated with different sequelae of spontaneous seizures, was investigated. The distribution pattern of GABA-T immunoreactive neurons in the hippocampus between the seizure-resistant and pre-seizure group of seizure sensitive gerbils was similar. Interestingly, at 30 min postictal, the enhancement of GABA-T immunoreactivity in the perikarya was apparently observed. This contrasted with the decline in GABA-T immunoreactivity in the granular and pyramidal layer. At 12–24 h postictal, GABA-T immunoreactivity in the hilar neurons had declined significantly. However, the GABA-T immunoreactivity in the granular layer increased. These findings suggest that in the gerbil, the alteration in GABA-T expressions may play an important role in the self-recovery mechanism from seizure attack via both GABA degradation and regulation of neuronal metabolism.  相似文献   

7.
Corticotropin releasing factor-binding protein (CRF-BP) binds CRF and urocortin 1 (Ucn 1) with high affinity, thus preventing CRF receptor (CRFR) activation. Despite recent progress on the molecular details that govern interactions between CRF family neuropeptides and their cognate receptors, little is known concerning the mechanisms that allow CRF-BP to bind CRF and Ucn 1 with picomolar affinity. We conducted a comprehensive alanine scan of 76 evolutionarily conserved residues of CRF-BP and identified several residues that differentially affected the affinity for CRF over Ucn 1. We determined that both neuropeptides derive their similarly high affinity from distinct binding surfaces on CRF-BP. Alanine substitutions of arginine 56 (R56A) and aspartic acid 62 (D62A) reduce the affinity for CRF by approximately 100-fold, while only marginally affecting the affinity for Ucn 1. The selective reduction in affinity for CRF depends on glutamic acid 25 in the CRF peptide, as substitution of Glu(25) reduces the affinity for CRF-BP by approximately 2 orders of magnitude, but only in the presence of both Arg(56) and Asp(62) in human CRF-BP. We show that CRF-BP(R56A) and CRF-BP(D62A) have lost the ability to inhibit CRFR1-mediated responses to CRF that activate luciferase induction in HEK293T cells and ACTH release from cultured rat anterior pituitary cells. In contrast, both CRF-BP mutants retain the ability to inhibit Ucn 1-induced CRFR1 activation. Collectively our findings demonstrate that CRF-BP has distinct and separable binding surfaces for CRF and Ucn 1, opening new avenues for the design of ligand-specific antagonists based on CRF-BP.  相似文献   

8.
The role of the entorhinal cortex and the adrenal gland in rat hippocampal lactate formation was assessed during and after a short-lasting immobilization stress and electroconvulsive shock (ECS). Extracellular lactate was measured on-line using microdialysis and enzyme reactions (a technique named lactography); in some rats, unilateral lesions of the entorhinal cortex were made or the bilateral adrenal glands were removed. The stress-evoked increase in hippocampus lactate was not altered either ipsi- or contralateral to an entorhinal cortex lesion. The response to ECS was attenuated only in the hippocampus ipsilateral to the entorhinal cortex lesion. Removal of bilateral adrenal glands caused some delay in the increase in hippocampal lactate after ECS and a major reduction in the stress-evoked lactate response. These results indicate that (1) the entorhinal cortex is activated by ECS, thereby activating hippocampal lactate efflux and presumably metabolism, and (2) the adrenal gland is essential in the response to stress and, to a minor extent, in the ECS-altered hippocampal metabolism.  相似文献   

9.
In the present study, the expression of Na(+)-K(+) ATPase in the gerbil hippocampus associated with various sequelae of spontaneous seizures were investigated in order to identify the roles of Na(+)-K(+) ATPase in the epileptogenesis and the recovery mechanisms in these animals. The population of Na(+)-K(+) ATPase immunoreactive neurons and Na(+)-K(+) ATPase immunodensity were significantly lower in the pre-seizure group of SS gerbils than those in SR gerbils. At 30-min postictal, the Na(+)-K(+) ATPase immunoreactivity was significantly elevated in the hippocampal complex. At 3-h postictal, the Na(+)-K(+) ATPase immunoreactivity in the hippocampus was declined, as compared to the 30-min postictal. At 12h after seizure on-set, Na(+)-K(+) ATPase expression was re-enhanced in the all regions of the hippocampal complex including the dentate hilus. Following administration of vigabatrin Na(+)-K(+) ATPase expression was also increased. The present data suggest that altered Na(+)-K(+) ATPase expression may contribute the regulation of the seizure activity in this animal.  相似文献   

10.
Reduced corticotropin-releasing factor (CRF) receptor activation in the postpartum period is essential for adequate maternal behavior. One of the factors contributing to this hypo-activity might be the CRF-binding protein (CRF-BP), which likely reduces the availability of free extracellular CRF/urocortin 1. Here, we investigated behavioral effects of acute CRF-BP inhibition using 5 μg of CRF(6-33) administered either centrally or locally within different parts of the bed nucleus of the stria terminalis (BNST) in lactating rats. Additionally, we assessed CRF-BP expression in the BNST comparing virgin and lactating rats.Central CRF-BP inhibition increased maternal aggression during maternal defense but did not affect maternal care or anxiety-related behavior. CRF-BP inhibition in the medial-posterior BNST had no effect on maternal care under non-stress conditions but impaired the reinstatement of maternal care following stressor exposure. Furthermore, maternal aggression, particularly threat behavior, and anxiety-related behavior were elevated by CRF-BP inhibition in the medial-posterior BNST. In the anterior–dorsal BNST, CRF-BP inhibition increased only non-maternal behaviors following stress. Finally, CRF-BP expression was higher in the anterior compared to the posterior BNST but was not different between virgin and lactating rats in either region.Our study demonstrates a key role of the CRF-BP, particularly within the BNST, in modulating CRF's impact on maternal behavior. The CRF-BP is important for the reinstatement of maternal care after stress, for modulating threat behavior during an aggressive encounter and for maintaining a hypo-anxious state during lactation. Thus, the CRF-BP likely contributes to the postpartum-associated down-regulation of the CRF system in a brain region-dependent manner.  相似文献   

11.
Corticotropin-releasing factor-binding protein (CRF-BP) is a 37 kDa protein present in the brain and plasma and is known to regulate the actions of CRF. It has been demonstrated that CRF-BP in the brain and the pituitary appears to be positively regulated by glucocorticoids. In this study, the effect of various doses of hydrocortisone infusions on plasma CRF-BP levels was assessed. Four groups of 10 age-matched males received a 100 min infusion of either placebo (saline), 40 microg/kg/h, 300 microg/kg/h or 600 microg/kg/h hydrocortisone. CRF-BP levels were measured via a LIRMA. In addition, levels of plasma ACTH and cortisol were measured by standard radioimmunoassay. As expected, plasma cortisol levels increased and plasma ACTH levels were suppressed following the infusion. When expressed as proportion of pre-infusion baseine, no significant changes in plasma CRF-BP levels were observed following the infusion for all hydrocortisone groups relative to the control group. However, a significant time-averaged positive correlation was found between CRF-BP and cortisol levels at low to moderate, but not high, cortisol levels. The data obtained in this study indicate that CRF binding protein levels within the time course examined may slightly appear to be affected in the peripheral circulation in response to pronounced, sustained hypercortisolemia.  相似文献   

12.
The entorhinal cortex (EC) provides the predominant excitatory drive to the hippocampal CA1 and subicular neurones in chronic epilepsy. Here we analysed the effects of one-sided lateral EC (LEC) and temporoammonic (alvear) path lesion on the development and properties of 4-aminopyridine-induced seizures. Electroencephalography (EEG) analysis of freely moving rats identified that the lesion increased the latency of the hippocampal seizure significantly and decreased the number of brief convulsions. Seizure-induced neuronal c-fos expression was reduced in every hippocampal area following LEC lesion. Immunocytochemical analysis 40 days after the ablation of the LEC identified sprouting of cholinergic and calretinin-containing axons into the dentate molecular layer. Region and subunit specific changes in the expression of ionotropic glutamate receptors (iGluRs) were identified. Although the total amount of AMPA receptor subunits remained unchanged, GluR1(flop) displayed a significant decrease in the CA1 region. An increase in NR1 and NR2B N-methyl-d-aspartate (NMDA) receptor subunits and KA-2 kainate receptor subunit was identified in the deafferented layers of the hippocampus. These results further emphasize the importance of the lateral entorhinal area in the spread and regulation of hippocampal seizures and highlight the potential role of the rewiring of afferents and rearrangement of iGluRs in the dentate gyrus in hippocampal convulsive activity.  相似文献   

13.
Abstract: Gerbils ( Meriones unguiculatus ) are known for their seizure sensitivity, which is dependent on an intact perforant path from the entorhinal cortex to the hippocampus. In contrast with other species, the perforant path in gerbils contains parvalbumin, a cytosolic high-affinity calcium-binding protein. Parvalbumin is known to be present in a subpopulation of GABA-containing neurons and is thought to be responsible for their physiological characteristics of fast spiking activity and lack of spike adaptation. Therefore, the question arose of whether this projection in gerbils is GABAergic or glutamatergic as in other species. In a first approach to this question, the effect of lesioning the origin of the perforant path, the entorhinal cortex, on levels of GABA and glutamate was determined by enzymatic-luminometric assay in single layers of the dentate gyrus of lyophilized brain sections. Parallel sections were cryofixed using an acidified acetone-formaldehyde mixture at -20°C for 48 h, and subsequently stained for parvalbumin immunocytochemistry. Seven days after ablation of the entorhinal cortex, parvalbumin staining was undetectable in the termination zone of the perforant path, the outer two-thirds of the stratum moleculare. In parallel, glutamate content was reduced to 80% of controls (and of the unoperated contralateral side) but unchanged in the inner third of the stratum moleculare and in stratum granulare. GABA content was not significantly altered by the lesion. From these results, we conclude that in the gerbil as in other species, the perforant path contains glutamate. The association of glutamate with parvalbumin suggests, however, that in the gerbil the calcium-dependent release of the transmitter is carefully controlled in the entorhinal perforant path.  相似文献   

14.
The ligand-receptor interaction has been commonly used in development of high throughput screening assays for new drugs. In some cases, an endogenous ligand interacts not only with membrane receptors but also with soluble binding proteins. Corticotrophin-releasing factor (CRF) is an important stress neurotransmitter/hormone involved in both the central and peripheral nervous systems. CRF exerts its function by interacting with CRFR1 and CRFR2 receptors. In addition, CRF-binding protein (CRF-BP) binds CRF with high affinity. Accordingly, CRF-BP has been suggested to play an important role in modulating CRF function. Based on the potential involvement of CRF-BP in many neurological disorders, it is desirable to develop a screening assay to look for drugs that either mimic or interfere with CRF binding to CRF-BP. An assay was developed to monitor the interactions of radiolabeled CRF with human/rat CRF-BP and the mouse CRFR1 (mCRFR1) receptor. By carefully examining the binding characteristics of radiolabeled CRF to mCRFR1, the assay was able to identify compounds that bind to CRF-BP with high affinity and have little or no affinity for mCRFR1 receptors. Based on a mathematical model, we have verified the screening system with several well-characterized CRF ligands that all have different affinities for CRF receptors and CRF-BP.  相似文献   

15.
The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neuro-intermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.  相似文献   

16.
In the present study, the distribution of succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) in the hippocampus of the Mongolian gerbil and its association with various sequelae of spontaneous seizure were investigated in order to identify the roles of GABA shunt in the epileptogenesis and the recovery mechanisms in these animals. Both SSADH and SSAR immunoreactivities in the GABAergic neurons were significantly higher in the pre-seizure groups of seizure sensitive (SS) gerbil as compared to those seen in the seizure resistant (SR) gerbils. The distributions of both SSADH and SSAR immunoreactivities in the hippocampus showed significant differences after the on-set of seizure. At 3 h postictal, when compared to the pre-seizure group of SS gerbils, a decline in the immunoreactivities in the perikarya was observed. At 12 h after seizure on-set, the densities of both SSADH and SSAR immunoreactivities were begun to recover to the pre-seizure level of SS gerbils. These results suggest that the GABAergic neurons in the hippocampal complex of the SS gerbil may be highly activated. In addition, the imbalance of GABA shunt expressions in the GABAergic neurons may imply a malfunction of the metabolism of GABAergic neurons in the SS gerbils, and this defect may trigger seizure on-set. Therefore, the initiation of seizure, at least in gerbils, may be the result of a malfunction in GABA shunt in the GABAergic neurons.  相似文献   

17.
The vertebrate CRF signaling system consists of corticotropin-releasing factor (CRF), two types of receptors to CRF (CRF-R1 and CRF-R2), and CRF-binding protein (CRF-BP). The aim of this study was to investigate the presence and localization of CRF, CRF-R2, and CRF-BP in the snail atrial neuroendocrine complexes, which include granular cells (GCs) and tightly connected nerve fibers and gliointerstitial cells. Immunofluorescence assay and immunogold electron microscopy using polyclonal antibodies against these proteins revealed immunoreactivity in the granules of all these cells. Western-blot analysis of the snailatria lysate using rabbit anti-CRF-R2 polyclonal antibodies revealed a specific band with a weight of 56 kids. These are the first data on the molecular weight of this receptor in mollusks. Furthermore, to clarify the possible functions of CRF in the neuroendocrine complexes, the hormone was added to GCs isolated from the snail atrium. The proportion of degranulated GCs after CRF addition almost doubled (45.5 vs. 24.5% in control, p < 0.05). The results indicate the presence of all three components of the CRF signaling system in the neuroendocrine complexes of snail atrium. In addition, their presence in both secretory and nervous components of the complexes suggests that the CRF signaling system participates in the nervous regulation of secretory activity of GCs and transfer of information from GCs to the CNS.  相似文献   

18.
A high level of hippocampal brain-derived neurotrophic factor (BDNF) in normally aged as compared with young rats suggests that it is important to maintain a considerable level of hippocampal BDNF during aging in order to keep normal hippocampal functions. To elucidate possible mechanisms of endogenous BDNF increase, changes in levels of BDNF were studied in the rat brain following systemic administration of various convulsant agents; excitotoxic glutamate agonists, NMDA, kainic acid and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA); GABA receptor antagonists, picrotoxin, pentylenetetrazole (PTZ) and lindane (gamma-hexachlorocyclohexane); and L-type voltage-dependent calcium channel agonist, BAY-K 8644. Kainic acid and AMPA, but not NMDA, caused remarkable increases in BDNF protein in the rat hippocampus and entorhinal cortex. Picrotoxin, PTZ and lindane stimulated BDNF production in the entorhinal cortex and also in the hippocampus of rats showing very severe convulsions. On the other hand, BAY-K 8644 treatment increased BDNF levels in the neocortex and entorhinal cortex. Maximal levels of BDNF protein were observed at 12--24 h, 8--16 h and 6 h following administration of kainic acid, PTZ and BAY-K 8644, respectively. Kainic acid stimulated BDNF synthesis in presynaptic hippocampal granule neurons, but not in postsynaptic neurons with its receptors, while PTZ and BAY-K 8644 produced the same effects in postsynaptic neurons in the entorhinal cortex (in granule neurons in the hippocampus) and in the whole cortex, respectively. Nifedipine inhibited almost completely BAY-K 8644, but not PTZ, effects. omega-Conotoxin GVIA and DCG-IV partially blocked kainic acid-induced enhancement of BDNF, indicating involvement of L-type and N-type voltage-dependent calcium channels, respectively. In addition, BDNF levels in the hippocampus of mice deficient in D-myo-inositol-1,4,5-triphosphate receptor gene were scarcely different from those in the same region of controls, suggesting little involvement of intracellular calcium increase through this receptor. BAY-K 8644, but not kainic acid or PTZ, stimulated the phosphorylation of cyclic AMP responsive element binding protein. Our results indicate convulsant-dependent stimulation of BDNF production and involvement of region-specific voltage-dependent calcium channels.  相似文献   

19.
Ungless MA  Singh V  Crowder TL  Yaka R  Ron D  Bonci A 《Neuron》2003,39(3):401-407
Stress increases addictive behaviors and is a common cause of relapse. Corticotropin-releasing factor (CRF) plays a key role in the modulation of drug taking by stress. However, the mechanism by which CRF modulates neuronal activity in circuits involved in drug addiction is poorly understood. Here we show that CRF induces a potentiation of NMDAR (N-methyl-D-aspartate receptor)-mediated synaptic transmission in dopamine neurons of the ventral tegmental area (VTA). This effect involves CRF receptor 2 (CRF-R2) and activation of the phospholipase C (PLC)-protein kinase C (PKC) pathway. We also find that this potentiation requires CRF binding protein (CRF-BP). Accordingly, CRF-like peptides, which do not bind the CRF-BP with high affinity, do not potentiate NMDARs. These results provide evidence of the first specific roles for CRF-R2 and CRF-BP in the modulation of neuronal activity and suggest that NMDARs in the VTA may be a target for both drugs of abuse and stress.  相似文献   

20.
Stress leads to changes in homeostasis and internal balance of the body and is known to be one of important factors in the development of several diseases. In the present study, we investigated changes in glucocorticoid receptor (GR) and ionized calcium-binding adapter molecule 1 (Iba-1) immunoreactivity in the adult and aged gerbil hippocampus after chronic restraint stress. Serum corticosterone level was much higher in both the stress-groups than the control groups. No neuronal death was found in all hippocampal subregions of the adult and aged gerbil after chronic restraint stress. GR immunoreactivity was decreased in both the adult and aged groups after repeated restraint stress; however, GR immunoreactivity in the adult-stress-group was decreased much more than that in the aged-stress-group. Iba-1 immunoreactive microglia were hypertrophied and activated in the adult group after repeated restraint stress; in the aged-stress-group, there was no any significant change in Iba-1 immunoreactive microglia. In brief, level of GR, not Iba-1, in the hippocampus was much decreased in the adult gerbil compared to the aged gerbil following chronic restraint stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号