共查询到20条相似文献,搜索用时 0 毫秒
1.
The epidermal growth factor receptors (erbB) constitute an important class of single pass transmembrane receptors involved in the transduction of signals important for cell proliferation and differentiation. Receptor association is a key event in the signal transduction process, but the molecular basis of this interaction is not fully understood. Previous biochemical and genetic studies have suggested that the single transmembrane helices of these receptor proteins might play a role in stabilizing the receptor complexes. To determine if the erbB transmembrane domains could provide a driving force to stabilize the receptor dimers, we carried out a thermodynamic study of these domains expressed as C-terminal fusion proteins with staphylococcal nuclease. Similar fusion constructs have been used successfully to investigate the oligomerization and association thermodynamics of a number of transmembrane sequences, including that of glycophorin A. Using SDS-PAGE analysis and sedimentation equilibrium analytical ultracentrifugation, we do not find strong, specific homo or hetero-interactions between the transmembrane domains of the erbB receptors in micellar solutions. Our results indicate that any preferential interactions between these domains in micellar solutions are extremely modest, of the order of 1 kcal mol(-1) or less. We applied a thermodynamic formalism to assess the effect of weakly interacting TM segments on the behavior of a covalently attached soluble domain. In the case of the ligand-bound EGFR ectodomain, we find that restriction of the ectodomain to the micellar phase by a hydrophobic TM, even in the absence of strong specific interactions, is largely sufficient to account for the previously reported increase in dimerization affinity. 相似文献
2.
Association of transmembrane (TM) helices is facilitated by the close packing of small residues present along the amino-acid sequence. Extensive studies have established the role of such small residue motifs (GxxxG) in the dimerization of Glycophorin A (GpA) and helped to elucidate the association of TM domains in the epidermal growth factor family of receptors (ErbBs). Although membrane-mediated interactions are known to contribute under certain conditions to the dimerization of proteins, their effect is often considered nonspecific, and any potential dependence on protein sequence has not been thoroughly investigated. We recently reported that the association of GpA is significantly assisted by membrane-induced contributions as quantified in different lipid bilayers. Herein we extend our studies to explore the origin of these effects and quantify their magnitude using different amino-acid sequences in the same lipid environment. Using a coarse-grained model that accounts for amino-acid specificity, we perform extensive parallel Monte Carlo simulations of ErbB homodimerization in dipalmitoyl-phosphatidylcholine lipid bilayers. A detailed characterization of dimer formation and estimates of the free energy of association reveal that the TM domains show a significant affinity to self-associate in lipid bilayers, in qualitative agreement with experimental findings. The presence of GxxxG motifs enhances favorable protein-protein interactions at short separations. However, the lipid-induced attraction presents a more complex character than anticipated. Depending on the interfacial residues, lipid-entropic contributions support a decrease of separation or a parallel orientation to the membrane normal, with important implications for protein function. 相似文献
3.
GxxxG motifs are common in transmembrane domains of membrane proteins and are often introduced to artificial peptides to inhibit or promote association to stable structures. The transmembrane domain of ErbB2 presents two separate such motifs that are proposed to be connected to stability and activity of the dimer. Using molecular simulations, we show that these sequences play a critical role during the recognition stage, forming transient complexes that lead to stable dimers. In pure phospholipid bilayers association occurs by contacts formed at the C-terminus promoted by the presence of phenylalanine residues. Helices subsequently rotate to eventually pack at short separations favored by lipid entropic contributions. In contrast, at intermediate cholesterol concentrations, a different pathway is followed that involves dimers with a weaker interface toward the N-terminus. However, at high cholesterol content, a switch toward the C-terminus is observed with an overall nonmonotonic change of the dimerization affinity. This conformational switch modulated by cholesterol has important implications on the thermodynamic, structural, and kinetic characteristics of helix-helix association in lipid membranes. 相似文献
4.
A recombinant protein termed CLS, which corresponds to the C-terminal portion of human L-selectin and contains its entire transmembrane and cytoplasmic domains (residues Ser473-Arg542), has been produced and its oligomeric state in detergents characterized. CLS migrates in the SDS polyacrylamide gel at a pace that is typically expected from a complex twice of its molecular weight. Additional studies revealed, however, that this is due to residues in the cytoplasmic domain, as mutations in this region or its deletion significantly increased the electrophoretic rate of CLS. Analytical ultracentrifugation and fluorescence resonance energy transfer studies indicated that CLS reconstituted in dodecylphosphocholine detergent micelles is monomeric. When the transmembrane domain of L-selectin is inserted into the inner membrane of Escherichia coli as a part of a chimeric protein in the TOXCAT assay, little oligomerization of the chimeric protein is observed. Overall, these results suggest that transmembrane and cytoplasmic domains of L-selectin lack the propensity to self-associate in membranes, in contrast to the previously documented dimerization of the transmembrane domain of closely related P-selectin. This study will provide constraints for future investigations on the interaction of L-selectin and its associating proteins. 相似文献
5.
Binding specificities and affinities of egf domains for ErbB receptors 总被引:14,自引:0,他引:14
ErbB receptor activation is a complex process and is dependent upon the type and number of receptors expressed on a given cell. Previous studies with defined combinations of ErbB receptors expressed in mammalian cells have helped elucidate specific biological responses for many of the recognized gene products that serve as ligands for these receptors. However, no study has examined the binding of these ligands in a defined experimental system. To address this issue, the relative binding affinities of the egf domains of eleven ErbB ligands were measured on six ErbB receptor combinations using a soluble receptor-ligand binding format. The ErbB2/4 heterodimer was shown to bind all ligands tested with moderate to very high affinity. In contrast, ErbB3 showed much more restrictive ligand binding specificity and measurable binding was observed only with heregulin, neuregulin2beta, epiregulin and the synthetic heregulin/egf chimera, biregulin. These studies also revealed that ErbB2 preferentially enhances ligand binding to ErbB3 or ErbB4 and to a lesser degree to ErbB1. 相似文献
6.
E Donier JA Gomez-Sanchez C Grijota-Martinez J Lakomá S Baars L Garcia-Alonso H Cabedo 《PloS one》2012,7(7):e40674
During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM. 相似文献
7.
G protein-coupled receptors (GPCRs) are a superfamily of integral membrane proteins vital for signaling and are important targets for pharmaceutical intervention in humans. Previously, we identified a group of ten amino acid positions (called key positions), within the seven transmembrane domain (7TM) interhelical region, which had high mutual information with each other and many other positions in the 7TM. Here, we estimated the evolutionary selection pressure at those key positions. We found that the key positions of receptors for small molecule natural ligands were under strong negative selection. Receptors naturally activated by lipids had weaker negative selection in general when compared to small molecule-activated receptors. Selection pressure varied widely in peptide-activated receptors. We used this observation to predict that a subgroup of orphan GPCRs not under strong selection may not possess a natural small-molecule ligand. In the subgroup of MRGX1-type GPCRs, we identified a key position, along with two non-key positions, under statistically significant positive selection. 相似文献
8.
Inositol 1,4,5-triphosphate receptors (Insp(3)Rs) and ryanodine receptors (ryRs) act as cationic channels transporting calcium ions from the endoplasmic reticulum to cytosol by forming tetramers and are proteins localized to the endoplasmic reticulum (ER). Despite the absence of classical calcium-binding motifs, calcium channeling occurs at the transmembrane domain. We have investigated putative calcium binding motifs in these sequences. Prediction methods indicate the presence of six transmembrane helices in the C-terminal domain, one of the three domains conserved between Insp(3)R and ryR receptors. The recently identified crystal structure of the K(+) channel, which also forms tetramers, revealed that two transmembrane helices, an additional pore helix and a selectivity filter are responsible for selective K(+) ion channeling. The last three TM helices of Insp(3)R and ryR are particularly well conserved and we found analogous pore helix and selectivity filter motif in these sequences. We obtained a three-dimensional structural model for the transmembrane tetramer by extrapolating the distant structural similarity to the K(+) channels. 相似文献
9.
The transmembrane domains of ErbB receptor tyrosine kinases are monotopic helical structures proposed to be capable of direct side-to-side contact with related receptors. Formation of the resulting homo- or hetero-oligomeric complexes is considered a key step in ligand-mediated signalling. ErbB-2, which has not been observed to form active homo-dimers in a ligand dependent manner, has been implicated as an important partner for formation of hetero-dimers with other ErbB receptors. Recent work has shown that the ErbB-2 transmembrane domain is capable of forming homo-oligomeric species in lipid bilayers, while a similar domain from ErbB-1 appears to have a lesser tendency to such interactions. Here, 2H nuclear magnetic resonance was used to investigate the role of the ErbB-2 transmembrane domain in hetero-oligomerisation with that of ErbB-1. At low total concentrations of peptide in the membrane, ErbB-2 transmembrane domains were found to decrease the mobility of corresponding ErbB-1 domains. The results are consistent with the existence of direct transmembrane domain involvement in hetero-oligomer formation within the ErbB receptor family. 相似文献
10.
《Cell Adhesion & Migration》2013,7(2):313-324
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling. 相似文献
11.
M. V. Goncharuk A. A. Schulga Ya. S. Ermolyuk E. N. Tkach S. A. Goncharuk Yu. E. Pustovalova K. S. Mineev E. V. Bocharov I. V. Maslennikov A. S. Arseniev M. P. Kirpichnikov 《Molecular Biology》2011,45(5):823-832
ErbB is a family of epidermal growth factor receptors representing an important class of receptor tyrosine kinases that play a leading role in cellular growth, development, and differentiation. Transmembrane domains of these receptors transduce biochemical signals across the plasma membrane via lateral homo- and heterodimerization. The relatively small size of ErbB transmembrane domain complexes with detergents or lipids makes it possible to study their detailed spatial structure using three-dimensional heteronuclear high-resolution NMR spectroscopy. Here, we describe an efficient expression system and a purification procedure for preparative-scale production of transmembrane peptides from all four ErbB proteins—ErbB1, ErbB2, ErbB3, and ErbB4—for the purpose of structural studies. The recombinant peptides were produced in Escherichia coli BL21(DE3)pLysS cells as N-terminal extensions of thioredoxin A. The fusion proteins were cleaved with the light chain of human enterokinase. Several (10–30) milligrams of purified isotope-labeled transmembrane peptides were isolated using a simple and convenient procedure, which consists of consecutive steps of immobilized metal affinity chromatography and cation-exchange chromatography. The purified peptides were reconstituted in a lipid/detergent environment (micelles or bicelles) and characterized using dynamic light scattering and CD and NMR spectroscopy. The data obtained indicate that purified ErbB transmembrane peptides are suitable for structural and dynamic studies of their homo- and heterodimer complexes using high resolution NMR spectroscopy. 相似文献
12.
Richard J Pearson Steven L Carroll 《The journal of histochemistry and cytochemistry》2004,52(10):1299-1311
Adult spinal cord motor and dorsal root ganglion (DRG) sensory neurons express multiple neuregulin-1 (NRG-1) isoforms that act as axon-associated factors promoting neuromuscular junction formation and Schwann cell proliferation and differentiation. NRG-1 isoforms are also expressed by muscle and Schwann cells, suggesting that motor and sensory neurons are themselves acted on by NRG-1 isoforms produced by their peripheral targets. To test this hypothesis, we examined the expression of the NRG-1 receptor subunits erbB2, erbB3, and erbB4 in rat lumbar DRG and spinal cord. All three erbB receptors are expressed in these tissues. Sciatic nerve transection, an injury that induces Schwann cell expression of NRG-1, alters erbB expression in DRG and cord. Virtually all DRG neurons are erbB2- and erbB3-immunoreactive, with erbB4 also detectable in many neurons. In spinal cord white matter, erbB2 and erbB4 antibodies produce dense punctate staining, whereas the erbB3 antibody primarily labels glial cell bodies. Spinal cord dorsal and ventral horn neurons, including alpha-motor neurons, exhibit erbB2, erbB3, and erbB4 immunoreactivity. Spinal cord ventral horn also contains a population of small erbB3+/S100beta+/GFAP- cells (GFAP-negative astrocytes or oligodendrocytes). We conclude that sensory and motor neurons projecting into sciatic nerve express multiple erbB receptors and are potentially NRG-1 responsive. 相似文献
13.
D. S. Osipenko T. R. Galimzyanov S. A. Akimov 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2016,10(4):259-268
A number of processes in living cells are accompanied by significant changes of the geometric curvature of lipid membranes. In turn, heterogeneity of the lateral curvature can lead to spatial redistribution of membrane components, most important of which are transmembrane proteins and liquid-ordered lipid-protein domains. These components have a so-called hydrophobic mismatch: the length of the transmembrane domain of the protein, or the thickness of the bilayer of the domain differ from the thickness of the surrounding membrane. In this work we consider redistribution of membrane components with hydrophobic mismatch in membranes with non-uniform geometric curvature. Dependence of the components’ energy on the curvature is calculated in terms of theory of elasticity of liquid crystals adapted to lipid membranes. According to the calculations, transmembrane proteins prefer regions of the membrane with zero curvature. Liquid-ordered domains having a size of a few nm distribute mainly into regions of the membrane with small negative curvature appearing in the cell plasma membrane in the process of endocytosis. The distribution of domains of a large radius is determined by a decrease of their perimeter upon bending; these domains distribute into membrane regions with relatively large curvature. 相似文献
14.
15.
Two chimeric receptors of epidermal growth factor receptor and c-Ros that differ in their transmembrane domains have opposite effects on cell growth. 下载免费PDF全文
Two chimeric receptors, ER1 and ER2, were constructed. ER1 contains the extracellular and transmembrane (TM) domains derived from epidermal growth factor receptor and the cytoplasmic domain from c-Ros; ER2 is identical to ER1 except that its TM domain is derived from c-Ros. Both chimeras can be activated by epidermal growth factor and are capable of activating or phosphorylating an array of cellular signaling proteins. Both chimeras promote colony formation in soft agar with about equal efficiency. Surprisingly, ER1 inhibits while ER2 stimulates cell growth on monolayer culture. Cell cycle analysis revealed that all phases, in particular the S and G2/M phases, of the cell cycle in ER1 cells were elongated whereas G1 phase of ER2 cells was shortened threefold. Comparison of signaling pathways mediated by the two chimeras revealed several differences. Several early signaling proteins are activated or phosphorylated to a higher extent in ER1 than in ER2 cells in response to epidermal growth factor. ER1 is less efficiently internalized and remains tyrosine phosphorylated for a longer time than ER2. However, phosphorylation of the 66-kDa She protein, activation of mitogen activated protein kinase, and induction of c-fos and c-jun occur either to a lesser extent or for a shorter time in ER1 cells. Cellular protein phosphorylation patterns are also different in ER1 and ER2 cells. In particular, a 190-kDa Shc-associated protein is tyrosine phosphorylated in ER2 but not in ER1 cells. Our results indicate that the TM domains have a profound effect on the signal transduction and biological activity of those chimeric receptors. The results also imply that sustained stimulation of ER1 due to its retarded internalization apparently triggers an inhibitory response that dominantly counteracts the receptor-mediated mitogenic signals. These two chimeras, expressed at similar levels in the same cell type but having opposite effects on cell growth, provide an ideal system to study the mechanism by which a protein tyrosine kinase inhibits cell growth. 相似文献
16.
Angiotensin receptors in smooth muscle cell membranes 总被引:3,自引:0,他引:3
M A Devynck M G Pernollet P Meyer S Fermandjian P Fromageot 《Nature: New biology》1973,245(141):55-58
17.
The ErbB receptors and their role in cancer progression 总被引:27,自引:0,他引:27
The involvement of the ErbB receptor tyrosine kinases in human cancer, as well as their essential role in a variety of physiological events during normal development, have motivated the interest in this receptor family. Approaches taken to block the activity of ErbB receptors in cancer cells have not only proven that they drive in vitro tumor cell proliferation, but have also become clinically relevant for targeting tumors with deregulated ErbB signaling. The mechanisms and downstream effectors through which the ErbB receptors influence processes linked to malignant development, including proliferation, cell survival, angiogenesis, migration, and invasion, are, however, only now becoming apparent. Our particular emphasis in this review will be on how ErbB receptors, in particular ErbB1 and ErbB2, contribute to processes linked to cancer progression. Importantly, in keeping with the emerging theme that ErbB receptors do not function in isolation, we will focus on receptor cooperativity, i.e., ErbB1 cooperates with other classes of receptors, and the ligand-less ErbB2 functions as a heterodimer with other ErbBs. 相似文献
18.
《The Journal of cell biology》1982,94(1):1-6
19.
Pierre De Meyts 《Journal of cellular biochemistry》1976,4(2):241-258
The binding of many polypeptide hormones to cell surface receptors does not appear to follow the law of mass action. While steady–state binding data are consistent in many cases with either heterogeneous populations of binding sites or interactions of the type known as negative cooperativity, study of the kinetics of dissociation of the hormone receptor complex allows an unambiguous demonstration of cooperative interactions. Negative cooperativity, which seems to be wide-spread among hormone receptors, provides exquisite sensitivity of the cell at low hormone concentrations while buffering against acutely elevated hormone levels. The molecular mechanisms underlying the cooperativity are still largely unknown. Cooperativity may stem from a conformational transition in individual receptors or involve receptor aggregation in the fluid membrane (clustering) or more extensive membrane phenomena. Thus, new models of hormone action must be considered which integrate the progress in our knowledge of both the complex mechanisms regulating hormone binding to their surface receptors, and the dynamic properties of the cell membrane. 相似文献
20.
AMPA receptors mediate fast excitatory neurotransmission by converting chemical signals into electrical signals, and thus it is important to understand the relationship between their chemical biology and their function. We used single-molecule fluorescence resonance energy transfer to examine the conformations explored by the agonist-binding domain of the AMPA receptor for wild-type and T686S mutant proteins. Each form of the agonist binding domain showed a dynamic, multistate sequential equilibrium, which could be identified only using wavelet shrinkage, a signal processing technique that removes experimental shot noise. These results illustrate that the extent of activation depends not on a rigid closed cleft but instead on the probability that a given subunit will occupy a closed-cleft conformation, which in turn is determined not only by the lowest energy state but also by the range of states that the protein explores. 相似文献