首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.p. DNA fragment containing (A/T)(n)X(m)(A/T)(p) sequences, where n>3, p>3; m=1,2; X = A,T,G, or C. Binding affinity depended on the sequence context of the target. CD experiments and molecular modeling showed that oligo(N-methylpyrrole)carboxamide moieties in the complex form two short antiparallel hairpins rather than a long parallel head-to-head hairpin. Binding of bis-MGB also stabilized a target duplex thermodynamically. Sequence specificity of bis-MGB/DNA binding was validated using bis-conjugates of sequence-specific hairpin (N-methylpyrrole)/(N-methylimidazole) carboxamides. In order to increase the size of recognition sequence, the conjugates of bis-MGB with triplex-forming oligonucleotides (TFO) were synthesized and compared to TFO conjugated with single MGB hairpin unit. Bis-MGB-oligonucleotide conjugates also bind to two blocks of three and more A.T/T.A pairs similarly to bis-MGB alone, independently of the oligonucleotide moiety, but with lower affinity. However, the role of TFO in DNA recognition was demonstrated for mono-MGB-TFO conjugate where the binding was detected mainly in the area of the target sequence consisting of both MGB and TFO recognition sites. Basing on the molecular modeling, three-dimensional models of both target DNA/bis-MGB and target DNA/TFO-bis-MGB complexes were built, where bis-MGB forms two antiparallel hairpins. According to the second model, one MGB hairpin is in the minor groove of 5'-adjacent A/T sequence next to the triplex-forming region, whereas the other one occupies the minor groove of the TFO binding polypurine tract. All these data together give a key information for the construction of MGB-MGB and MGB-oligonucleotide conjugates possessing high specificity and affinity for the target double-stranded DNA.  相似文献   

2.
Polyamides that are structural analogues of the naturally occurring DNA minor groove binding antibiotic distamycin (Dst) are promising candidates as gene modulators. Developing strategies for the large scale screening and monitoring of the cellular distribution of such ligands would aid the faster discovery of molecules, which would have eventual utility in molecular biology and medicine. Attachment of fluorescent tags would be a useful step towards this end. A fundamental question in this connection is whether the tag modifies the DNA binding affinity of the parent compounds. Towards answering this question, we have developed two oligopeptides that bear the dansyl (N, N-dimethylaminonaphthalene sulfonamido fluorophore) coupled directly to the N-terminus of the conjugated N-methylpyrrole carboxamide network, and possess three or four N-methyl pyrrole carboxamide units (abbreviated as Dn3 and Dn4 respectively). DNA binding abilities of these molecules were assessed from fluorescence titration experiments, duplex-DNA T(m) analysis (employing both UV and fluorescence spectroscopy), induced circular dichroism measurements (ICD), salt dependence of ICD and apparent binding constant measurements (K(app)) employing ethidium bromide (EtBr) displacement assay. Both these molecules reported DNA binding in the form of an enhanced fluorescence emission. As judged from the ICD measurements, salt dependence of ICD, T(m) analysis and K(app) measurements, the binding affinities of the molecules that possessed dansyl group at their N-termini were lower than the ones with equivalent number of amide units, but possessed N-methylpyrrole carboxamide unit at their N- termini. These results would have implications in the future design of fluorescent polyamides.  相似文献   

3.
It is shown that antibiotics actinomycin D (AM), netropsin (Nt), distamycin A (DM) and the propyl analogue of distamycin A (pDM) being complexed with DNA are located within the narrow groove of DNA. A comparative investigation of the 3H-dimethyl sulphate methylation extent of free calf thymus DNA and its complexes with AM, Nt, DM and pDM reveals that upon DNA saturation these antibiotics decrease the methylation level of the narrow groove (AM by 30%, pDM by 50%, DM by 65% and Nt by 70%). In the triple complex of DNA+AM+DM the methylation level of the narrow groove drops by 80%. The large groove is not shielded by these antibiotics at all. However, the methylation level of the large groove decreases by 50% for T6 phage DNA due to the presence of glucosyl residues linked to 5-hydroxymethylcytosine within the large groove. The binding of AM to DNA saturated with Nt or with the analogue of distamycin A (DM2) containing the 2 N-methylpyrrole residues has been investigated by spectrophotometry. The apparent number of binding sites for AM in these 2 complexes is about half as much as observed for free DNA while the saturation level of the binding decreased only by about 20%. This proves simultaneous presence of AM and Nt (DM2) within the narrow groove of DNA.  相似文献   

4.
Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA.Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA).poly(dT) regions. The pentapeptide binds 6-7-base-pair sites with a preference for poly(dA).poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A + T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A + T rich binding site.  相似文献   

5.
Here, we present the synthesis, photochemical, and DNA binding properties of three photoisomerizable azobenzene-distamycin conjugates in which two distamycin units were linked via electron-rich alkoxy or electron-withdrawing carboxamido moieties with the azobenzene core. Like parent distamycin A, these molecules also demonstrated AT-specific DNA binding. Duplex DNA binding abilities of these conjugates were found to depend upon the nature and length of the spacer, the location of protonatable residues, and the isomeric state of the conjugate. The changes in the duplex DNA binding efficiency of the individual conjugates in the dark and with their respective photoirradiated forms were examined by circular dichroism, thermal denaturation of DNA, and Hoechst displacement assay with poly[d(A-T).d(T-A)] DNA in 150 mM NaCl buffer. Computational structural analyses of the uncomplexed ligands using ab initio HF and MP2 theory and molecular docking studies involving the conjugates with duplex d[(GC(AT)10CG)]2 DNA were performed to rationalize the nature of binding of these conjugates.  相似文献   

6.
Interaction of two synthetic analogs of distamycin (Dst), PPA and PAP, containing a saturated beta-alanine moiety replacing one N-methylpyrrole ring, with different polynucleotides and natural DNAs were studied using UV and CD spectroscopy. The results indicate that, similar to Dst, these analogs bind to DNA via the minor groove with a specificity towards AT-base pairs. It may be proposed that pyrrole chromophores in Dst probably do not play a role in the AT-base selectivity exhibited by Dst.  相似文献   

7.
New conjugates of triplex-forming pyrimidine oligo(2'-O-methylribonucleotides) with one or two 'head-to-head' hairpin oligo(N-methylpyrrole carboxamide) minor-groove binders (MGBs) attached to the terminal phosphate of the oligonucleotides with a oligo(ethylene glycol) linker were synthesized. It was demonstrated that, under appropriate conditions, the conjugates form stable complexes with double-stranded DNA (dsDNA) similarly to triplex-forming oligo(deoxyribonucleotide) (TFO) conjugates containing 5-methylated cytosines. Kinetic and thermodynamic parameters of the complex formation were evaluated by gel-shift assay and thermal denaturation. Higher melting temperatures (Tm), faster complex formation, and lower dissociation constants (Kd) of the triple helices (6-7 nM) were observed for complexes of MGB-oligo(2'-O-methylribonucleotide) conjugates with the target dsDNA compared to the nonconjugated individual components. Interaction of MGB moieties with the HIV proviral DNA fragment was indicated by UV/VIS absorption changes at 320 nm in the melting curves. The introduction of thymidine via a 3',3'-type 'inverted' phosphodiester linkage at the 3'-end of oligo(2'-O-methylribonucleotide) conjugates (3'-protection) had no strong influence on triplex formation, but slightly affected complex stability. At pH 6.0, when one or two hairpin MGBs were attached to the oligonucleotide, both triplex formation and minor-groove binding played important roles in complex formation. When two 'head-to-head' oligo(N-methylpyrrole) ligands were attached to the same terminal phosphate of the oligonucleotide or the linker, binding was observed at pH >7.5 and at high temperatures (up to 74 degrees). However, under these conditions, binding was retained only by the MGB part of the conjugate.  相似文献   

8.
Synthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5'-CGTTTATTp-3'/5'-AATAAACG-3' melts at 20 degrees C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46 degrees C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60 degrees C. It is even higher than in case of "classic" octapyrrole hairpin ligand (Tm = 58 degrees C). Sequence-specific character of stabilization by two conjugated ligands was demonstrated for G:C-containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and beta units according to established recognition rules (deltaTm = 20 degrees C). The two-strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site-specific ligands recognizing single- and double-stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

9.
To target DNA A.T tracts, a three-ring polyamide containing an N-methylpyrrole amino acid has been linked, on solid support, to carboxylic derivatives of phenanthroline and dimers of phenanthroline: 2-Clip-Phen, 3-Clip-Phen, or 2-Clip-Phen containing a long tether. After metalation by CuCl(2), the DNA cleavage activities of the different conjugates were compared on a restriction fragment. Cleavage patterns showed that the polyamide moiety of conjugates directs the cleavage activity in the vicinity of A.T tracts but the precise cleavage selectivity of these conjugates was dependent on the type of phenanthroline residue linked to the poly-N-methylpyrrole entity.  相似文献   

10.
Kostrhunova H  Brabec V 《Biochemistry》2000,39(41):12639-12649
The requirement for novel platinum antitumor drugs led to the concept of synthesis of novel platinum drugs based on targeting cisplatin to various carrier molecules. We have shown [Loskotova, H., and Brabec, V. (1999) Eur. J. Biochem. 266, 392-402] that attachment of DNA minor-groove-binder distamycin to cisplatin changes several features of DNA-binding mode of the parent platinum drug. Major differences comprise different conformational changes in DNA and a considerably higher interstrand cross-linking efficiency. The studies of the present work have been directed to the analysis of oligodeoxyribonucleotide duplexes containing single, site-specific adducts of platinum-distamycin conjugates. These uniquely modified duplexes were analyzed by Maxam-Gilbert footprinting, phase-sensitive gel electrophoresis bending assay and chemical probes of DNA conformation. The results have indicated that the attachment of distamycin to cisplatin mainly affects the sites involved in the interstrand cross-links so that these adducts are preferentially formed between complementary guanine and cytosine residues. This interstrand cross-link bends the helix axis by approximately 35 degrees toward minor groove, unwinds DNA by approximately 95 degrees and distorts DNA symmetrically around the adduct. In addition, CD spectra of restriction fragments modified by the cisplatin-distamycin conjugates have demonstrated that distamycin moiety in the interstrand cross-links of these compounds interacts with DNA. This interaction facilitates the formation of these adducts. Hence, the structural impact of the specific interstrand cross-link detected in this study deserves attention when biological behavior of cisplatin derivatives targeted by oligopeptide DNA minor-groove-binders is evaluated.  相似文献   

11.
Bis-conjugates of hairpin N-methylpyrrole/N-methylimidazole oligocarboxamide minor groove binders (MGB) possessing enhanced affinity and sequence-specificity for dsDNA were synthesized. Two hairpin MGBs were connected by their N-termini via an aminodiacetate linker. The binding of bis-MGB conjugates to the target DNA was studied by gel mobility retardation, footprinting, and circular dichroism; their affinity and binding mode in the DNA minor groove were determined. In order to functionalize the bis-MGB conjugates, DNA-cleaving agents such as phenanthroline or bipyridine were attached. Effective site-specific cleavage of target DNA in the presence of Cu(2+) ions was observed.  相似文献   

12.
We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.  相似文献   

13.
A series of amino- and glycoconjugates of pyrido[4,3,2-kl]acridine and pyrido[4,3,2-kl]acridin-4-one have been prepared. The most active molecules, the amino conjugates 7 and 11, display a cytostatic activity against HT-29 cancer cells at micromolar concentration. This activity correlates well with a strong DNA binding. The molecules, amino or glycoconjugates, bind DNA by intercalation, the amino or glyco substituent being located in one groove. None of the molecules inhibits topoisomerase activity.  相似文献   

14.
This study demonstrated that agents capable of interacting with the minor groove in nuclear DNA interfere with topoisomerase II mediated effects of antitumor drugs such as VM-26 and m-AMSA. Distamycin, Hoechst 33258, and DAPI were used as agents capable of AT-specific binding in the minor groove of DNA while producing no profound long-range distortion of DNA structure. In intact nuclei from L1210 cells, these minor groove binders inhibited the induction of topoisomerase II mediated DNA damage (DNA-protein cross-links and DNA double-strand breaks) by VM-26 and m-AMSA. The inhibitory effects of distamycin reflected prevention of formation of new lesions but not reversal of preexisting damage. The minor groove binders did not differentiate between lesions induced by an intercalator, m-AMSA, or by a DNA-nonbinding drug, VM-26. All three groove binders inhibited DNA breaks more strongly than DNA-protein cross-links. The inhibitory potency correlated with the size of minor groove binders and the size of their DNA-binding sites: distamycin (5 bp) greater than Hoechst 33258 (4 bp) greater than DAPI (3 bp). The results showed that DNA minor groove binders are a new type of modulators of the action of topoisomerase II targeted drugs.  相似文献   

15.
D Dasgupta  I H Goldberg 《Biochemistry》1985,24(24):6913-6920
Two general approaches have been taken to understand the mechanism of the reversible binding of the nonprotein chromophore of neocarzinostatin to DNA: (1) measurement of the relative affinity of the chromophore for various DNAs that have one or both grooves blocked by bulky groups and (2) studies on the influence of adenine-thymine residue-specific, minor groove binding agents such as the antibiotics netropsin and distamycin on the chromophore-DNA interaction. Experiments using synthetic DNAs containing halogen group (Br, I) substituents in the major groove or natural DNAs with glucosyl moieties projecting into the major groove show that obstruction of the major groove does not decrease the binding stoichiometry or the binding constant for the DNA-chromophore interaction. Chemical methylation of bases in both grooves of calf thymus DNA, resulting in 13% methylation of N-7 of guanine in the major groove and 7% methylation of N-3 of adenine in the minor groove, decreases the binding affinity and increases the size of the binding site for neocarzinostatin chromophore. Similar results were obtained whether binding parameters were determined directly by spectroscopic measurements or indirectly by measuring the ability of the DNA to protect the chromophore against degradation. On the other hand, netropsin and distamycin compete with neocarzinostatin chromophore for binding to the minor groove of DNA, as shown by their decrease in the ability of poly(dA-dT) to protect the chromophore against degradation and their reduction in chromophore-induced DNA damage as measured by thymine release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
First examples of distamycin (Dst) analogs which lack hydrogen bond donor or acceptor groups at the N-terminus have been synthesized. The first molecule of this series, which is a bispyrrole peptide, did not exhibit any detectable binding with double-stranded (ds) DNA. However, all other analogs did bind strongly to AT-rich sequences of ds-DNA, with the binding affinities increasing as a function of the number of repeating pyrrole carboxamide units. These results imply that a hydrogen bond donor or acceptor atom per se at the N-terminus is not a prerequisite for DNA binding in the case of pyrrole carboxamide-based Dst analogs. However, in the absence of H-bond donor or acceptor at the N-terminus, a minimum of three pyrrole carboxamide units is necessary for the onset of DNA binding. Beyond this minimum number, the binding affinity increases as a function of the number of pyrrole units, as a result of the greater availability of hydrogen bonding and van der Waals surface. Experiments with poly[d(G-C)] have shown that the presence of the N-terminus formamide group is not inevitable for GC binding of this class of molecules. The observation that the N-terminus formamide unit can be dispensed with suggests that these molecules, which are much easier to synthesize and functionalize, can be used in place of the conventional analogs of distamycin for the development of novel minor groove binders with extended sequence recognition properties.  相似文献   

18.
Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG)·d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand–solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand–DNA binding.  相似文献   

19.
Abstract

Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA·Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA)·poly(dT) regions. The pentapeptide binds 6–7-base-pair sites with a preference for poly(dA)·poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A+T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A+T rich binding site.  相似文献   

20.
The interaction of the antibiotics distamycin A, distamycin analogue and netropsin with chromatin of calf thymus has been studied by circular dichroism measurements and by gel filtration. The minor groove of DNA in chromatin is accessible by 83–89% to the binding of these antibiotics as compared with that of free DNA. The present results combined with our data on the methylation of chromatin with dimethylsulphate [3] strongly suggest that the minor groove of DNA in chromatin is not occupied by chromatin proteins.Abbreviations DM distamycin A - DM2 analogue of distamycin - Nt netropsin - CD spectra circular dichroism spectra  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号