首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glasshouse experiments were conducted to evaluate the influence of L-methionine (L-MET) and L-ethionine (L-ETH) added to soil on the growth of corn (Zea mays L.) and tomato (Lycopersicon esculentum), respectively. The application of L-MET and L-ETH stimulated C2H4 production in soil by 299- and 313-fold, respectively, over an unamended control. An L-MET treatment of 1.85 mg kg−1 soil was the most effective in increasing shoot height, shoot fresh weight, internodal distance, and stem diameter in two corn cultivars, Kandy Korn and Miracle, while shoot and root dry weights, leaf width, uppermost leaf collar base distance and resistance to stem breaking were increased in the case of Kandy Korn only. A significant epinastic response was observed in the second and third leaves of tomato plants when soil was treated with L-ETH. An L-ETH treatment of 0.2 mg kg−1 soil resulted in the maximum fresh fruit yield, while 0.02 and 2.0 mg kg−1 gave the most fruit and greater average weight of fresh fruit, respectively. Concentrations ranging from 0.002 to 2.0 mg L-ETH kg−1 soil initiated early fruit formation. Early fruit ripening was observed with an application rate of 20 mg L-ETH kg−1 soil. The mechanism of action of these chemicals could either be attributed to i) substrate-dependent C2H4 production in soil by the indigenous microflora, ii) uptake directly by plant roots followed by metabolism within the tissues, and/or iii) a change in the balance of rhizosphere microflora affecting plant growth.  相似文献   

2.
Carbon cycling responses of ecosystems to global warming will likely be stronger in cold ecosystems where many processes are temperature‐limited. Predicting these effects is difficult because air and soil temperatures will not change in concert, and will affect above and belowground processes differently. We disentangled above and belowground temperature effects on plant C allocation and deposition of plant C in soils by independently manipulating air and soil temperatures in microcosms planted with either Leucanthemopsis alpina or Pinus mugo seedlings. Daily average temperatures of 4 or 9°C were applied to shoots and independently to roots, and plants pulse‐labelled with 14CO2. We traced soil CO2 and 14CO2 evolution for 4 days, after which microcosms were destructively harvested and 14C quantified in plant and soil fractions. In microcosms with L. alpina, net 14C uptake was higher at 9°C than at 4°C soil temperature, and this difference was independent of air temperature. In warmer soils, more C was allocated to roots at greater soil depth, with no effect of air temperature. In P. mugo microcosms, assimilate partitioning to roots increased with air temperature, but only when soils were at 9°C. Higher soil temperatures also increased the mean soil depth at which 14C was allocated. Our findings highlight the dependence of C uptake, use, and partitioning on both air and soil temperature, with the latter being relatively more important. The strong temperature‐sensitivity of C assimilate use in the roots and rhizosphere supports the hypothesis that cold limitation on C uptake is primarily mediated by reduced sink strength in the roots. We conclude that variations in soil rather than air temperature are going to drive plant responses to warming in cold environments, with potentially large changes in C cycling due to enhanced transfer of plant‐derived C to soils.  相似文献   

3.
Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with 13C–15N‐enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO3–N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming.  相似文献   

4.
The chemical, mineralogical, and microbial properties of the rhizosphere of a range of forested ecosystems were studied to identify the key processes controlling the distribution and fate of trace metals at the soil–root interface. The results of our research indicate that: (1) the rhizosphere is a soil microenvironment where properties (e.g., pH, organic matter, microbes) and processes (nutrient and water absorption, exudation) differ markedly from those of the adjacent bulk soil; (2) the rhizosphere is a corrosive medium where the weathering and neoformation of soil solid phases are enhanced; (3) the concentrations of solid-phase and water-soluble trace metals like Cd, Cu, Ni, Pb, and Zn are generally higher in the rhizosphere as shown by both macroscopic and microscopic approaches; (4) a larger fraction of water-soluble metals is complexed by dissolved organic substances in the rhizosphere; and (5) soil microorganisms play, either directly or indirectly, a distinct role on metal speciation, in particular Cu and Zn, in the rhizosphere. These results improve our capacity to estimate metal speciation and bioavailability at the soil–root interface. Furthermore, the research emphasizes the crucial physical position occupied by the rhizosphere with respect to the process of elemental uptake by plants and its key functional role in the transfer of trace metals along the food chain. We conclude that the properties and processes of the rhizosphere should be viewed as key components of assessments of the ecological risks associated with the presence of trace metals in soils.  相似文献   

5.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

6.
Glasshouse experiment was conducted to assess the impact of green chopped leaves of four test plants (Lantana camara, Ficus virens, Kigelia pinnata and Ficus bengalensis) and two nematicides (Phorate and Carbofuran) on the plant growth parameters of tomato cv. K25 and on the root-knot development. Results revealed that all the tested treatments significantly (p = 0.05) improved plant growth parameters and reduced root-knot development compared to control. Among the tested organic additives, chopped green leaves of Lantana camara added to soil gave the highest enhancement in plant growth parameters, including plant height, fresh and dry weight, number of fruits and fruit weight with the values of 94.2 cm, 106.8 g, 31.6 g, 7.2 and 153.3 g respectively, as well as a greater reduction of Meloidogyne javanica reproduction and development but exhibiting a lower response compared to nematicides. There was also significant reduction in root-knot development in tomato plants growing in other organic additive amended soil.  相似文献   

7.
The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7–51.5% and 27.6–28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79–46.07, 63.28–70.60, and 63.10–66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.  相似文献   

8.
In order to stimulate selection for plant‐associated bacteria with the potential to improve Cd phytoextraction, yellow lupine plants were grown on a metal‐contaminated field soil. It was hypothesised that growing these plants on this contaminated soil, which is a source of bacteria possessing different traits to cope with Cd, could enhance colonisation of lupine with potential plant‐associated bacteria that could then be inoculated in Cd‐exposed plants to reduce Cd phytotoxicity and enhance Cd uptake. All cultivable bacteria from rhizosphere, root and stem were isolated and genotypically and phenotypically characterised. Many of the rhizobacteria and root endophytes produce siderophores, organic acids, indole‐3‐acetic acid (IAA) and aminocyclopropane‐1‐carboxylate (ACC) deaminase, as well as being resistant to Cd and Zn. Most of the stem endophytes could produce organic acids (73.8%) and IAA (74.3%), however, only a minor fraction (up to 0.7%) were Cd or Zn resistant or could produce siderophores or ACC deaminase. A siderophore‐ and ACC deaminase‐producing, highly Cd‐resistant Rhizobium sp. from the rhizosphere, a siderophore‐, organic acid‐, IAA‐ and ACC deaminase‐producing highly Cd‐resistant Pseudomonas sp. colonising the roots, a highly Cd‐ and Zn‐resistant organic acid and IAA‐producing Clavibacter sp. present in the stem, and a consortium composed of these three strains were inoculated into non‐exposed and Cd‐exposed yellow lupine plants. Although all selected strains possessed promising in vitro characteristics to improve Cd phytoextraction, inoculation of none of the strains (i) reduced Cd phytotoxicity nor (ii) strongly affected plant Cd uptake. This work highlights that in vitro characterisation of bacteria is not sufficient to predict the in vivo behaviour of bacteria in interaction with their host plants.  相似文献   

9.
Phytoextraction is a green technique for the removal of soil contaminants by plants uptake with the subsequent elimination of the generated biomass. The halophytic plant Suaeda vera Forssk. ex J.F.Gmel. is an native Mediterranean species able to tolerate and accumulate salts and heavy metals in their tissues. The objective of this study was to explore the potential use of S. vera for soil metal phytoextraction and to assess the impact of different chelating agents such as natural organic acids (oxalic acid [OA], citric acid [CA]), amino acids (AA) and Pseudomonas fluorescens bacteria (PFB) on the metal uptake and translocation. After 12 months, the highest accumulation of Cu was observed in the root/stem of PFB plots (17.62/8.19 mg/kg), in the root/stem of CA plots for Zn (31.16/23.52 mg/kg) and in the root of OA plots for Cr (10.53 mg/kg). The highest accumulation of metals occurred in the roots (27.33–50.76 mg/kg). Zn was the metal that accumulated at the highest rates in most cases. The phytoextraction percentages were higher for Cu and Zn (~2%) with respect to Cr (~1%). The percentages of metal removal from soil indicate the need to monitor soil properties, to recognize the influence of each treatment and to increase the concentration of bioavailable metals by the use of agricultural management practices aimed at promoting plant growth.  相似文献   

10.
An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg–1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg–1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.  相似文献   

11.

Nitrification is a key biological process for the control of soil NO3 ? availability and N losses from terrestrial ecosystems. The study investigates the causes for the absence of net nitrification activity in the soil of a Mediterranean monospecific woodland of Arbutus unedo, focusing in particular on the possible role of chemicals produced by this plant. The mineral N pool, net rates of mineralization and nitrification were measured in the soil top 10 cm over 18 months. Raw extracts of leaves and roots of Arbutus unedo and soil underneath Arbutus plant canopy were purified using chromatographic techniques and the structure of chemicals was defined using spectroscopic and spectrometric methods. Leaf extracts (raw, aqueous and organic fractions) were tested for their toxicity on net nitrification, using a test soil. Field and laboratory incubations showed soil NO3 ? concentration below the detection limit over the whole study period, despite the significant NH4 + availability. Toxicity tests indicated that more than 400 μg of extract g?1 dry soil were needed to have more than 50% reduction of net NO3 ? production. Gallocatechin and catechin were among the most abundant chemicals in the extracts of leaves, roots and soil. Their soil concentration was significantly higher than the annual calculated input via leaf litter, and it was in the range of toxic concentrations, as deduced from the dose-response curve of the toxicity test. Data support the hypothesis that plant produced chemicals might be involved in the limited net nitrate production in this Mediterranean woodland.

  相似文献   

12.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

13.
Partition of phenanthrene between water and roots was determined for 13 plant species using a batch equilibration technique. Partition coefficients (K rt) from 734 to 2,564 L/kg were measured. A simple model to estimate the partition of organic contaminants between roots and water was developed based on the composition of plant roots and the 1-octanol/water partitioning coefficient. The estimates were close to the observed results, with differences of < 14%. The partition coefficients of phenanthrene by root cell walls were 13–84% greater than sorption by the corresponding roots. The cell wall fraction—the dominant fraction of root organic components—was identified as the primary domain for partition of phenanthrene. The measured hydroponic uptake of phenanthrene into roots was always less than phenanthrene partition by plant roots. A modified sorption model containing a quasi-equilibrium factor (αpt) could reasonably predict hydroponic uptake by plant roots. The results obtained from this study provide insights into partition of highly lipophilic organic chemicals in roots, and provide convenient methods to estimate this partition as well as uptake of such chemicals in root–water systems.  相似文献   

14.
Diurnal pattern of water potential in woody plants   总被引:2,自引:3,他引:2       下载免费PDF全文
Klepper B 《Plant physiology》1968,43(12):1931-1934
The dynamic relationship between the rates of water loss and uptake controls plant water status. Marked diurnal variations in water potential of both leaves and fruit occurred in all plants studied. Variations in water status during the day were most clearly related to changes in evaporative demand of the air and were different for the east and west sides of a tree. At night, the plant water potential reflected the soil moisture status.

Changes in the water potential of pear fruit were correlated with changes in fruit diameter. Since water loss from fruit occurred mostly through the pedicel into the xylem of the tree, the fruit could be used as a crude gauge of xylem water potential, which also showed dramatic changes during the day.

  相似文献   

15.
In this article we discuss the possible significance of biological processes, and of fungi in particular, in weathering of minerals. We consider biological activity to be a significant driver of mineral weathering in forest ecosystems. In these environments fungi play key roles in organic matter decomposition, uptake, transfer and cycling of organic and inorganic nutrients, biogenic mineral formation, as well as transformation and accumulation of metals. The ability of lichens, mutualistic symbioses between fungi and photobionts such as algae or cyanobacteria, to weather minerals is well documented. The role of mycorrhizal fungi forming symbioses with forest trees is less well understood, but the mineral horizons of boreal forests are intensively colonised by mycorrhizal mycelia which transfer protons and organic metabolites derived from plant photosynthates to mineral surfaces, resulting in mineral dissolution and mobilisation and redistribution of anionic nutrients and metal cations. The mycorrhizal mycelia, in turn provide efficient systems for the uptake and direct transport of mobilised essential nutrients to their host plants which are large sinks. Since almost all (99.99 %) non-suberised lateral plant roots involved in nutrient uptake are covered by ectomycorrhizal fungi, most of this exchange of metabolites must take place through the plant–fungus interface. This idea is still consistent with a linear relationship between soil mineral surface area and weathering rate since the mycelia that emanate from the tree roots will have a larger area of contact with minerals if the mineral surface area is higher. Although empirical models based on bulk soil solution chemistry may fit field data, we argue that biological processes make an important contribution to mineral weathering and that a more detailed mechanistic understanding of these must be developed in order to predict responses to environmental changes and anthropogenic impact.  相似文献   

16.
Arbuscular mycorrhizal (AM) fungi form a continuum between roots and soil. One end of this continuum is comprised of the highly intimate plant–fungus interface with intracellular organelles for nutrient exchange, while on the other end the fungus interacts with bacteria to compensate for the AM fungus' inability to take up organic nutrients from soil. How both interfaces communicate in this highly complex tripartite mutualism is widely unknown. Here, the effects of phosphate-solubilizing bacteria (PSB) Rahnella aquatilis dwelling at the surface of the extraradical hyphae of Rhizophagus irregularis was analysed based on the expression of genes involved in C-P exchange at the peri-arbuscular space (PAS) in Medicago truncatula. The interaction between AM fungus and PSB resulted in an increase in uptake and transport of Pi along the extraradical hyphae and its transfer from AM fungus to plant. In return, this was remunerated by a transfer of C from plant to AM fungus, improving the C-P exchange at the PAS. These results demonstrated that a microorganism (i.e., a PSB) developing at the hyphosphere interface can affect the C-P exchange at the PAS between plant and AM fungus, suggesting a fine-tuned communication operated between three organisms via two distantly connected interfaces.  相似文献   

17.
为探讨供磷(P)对米老排(Mytilaria laosensis)生长和养分状况的影响,采用土培的方法,研究了不同供磷水平下米老排苗木的生长、养分含量、养分累积量和P吸收效率。结果表明,随着供P水平的提高,米老排苗木的苗高、生物量和养分累积量均呈先上升后下降的趋势;地径呈先增加后稳定的趋势;叶片和全株中的养分含量变化一致,氮(N)含量变化不明显,钾(K)含量呈先降低后升高的趋势,而P含量明显提高;P吸收效率呈现降低-升高-降低的趋势。在单株供P为30 mg时,米老排苗木的叶生物量、根生物量、叶片中N累积量及P吸收效率最大。当供P水平达到45 mg时,米老排苗木的苗高、茎生物量、总生物量、叶片中的P、K累积量和全株中的N、P、K累积量均达到最大值。而供P水平达60 mg时,米老排苗木苗高、生物量、养分累积量和P吸收效率均明显下降。这说明适合米老排苗木生长的供P水平为每株30~45 mg。  相似文献   

18.
Trace elements in soils exist as components of several different fractions. We have analyzed the correlation between total and extractable (EDTA, calcium chloride and deionized water) Zn, Pb and Cu concentrations in soils and the concentration of these elements in plant leaves. Soil and plant samples have been taken from Sulcis-Iglesiente (Sardinia), an area rich in mining tailings. This has made that the concentrations of the trace element under study in soils were varied. Three plants have been studied: Dittrichia viscosa, Cistus salviifolius, and Euphorbia pithyusa subsp. cupanii. Soil samples beneath each of them at depths of 0–30 and 30–60 cm have been considered. The highest concentration of trace elements in the leaves of the studied species has been found for Zn. The calcium carbonate content and the crystalline and amorphous forms of iron in the soil have determined the concentration of metal in plant leaves. The soil concentrations that have been found with the extraction methods are uncorrelated with Pb and Cu concentrations in plants, but Zn is correlated with the fraction extracted with EDTA and calcium chloride. The concentrations of trace metals in plants are most closely related to the soil contents of CaCO3, electrical conductivity, Feox, and Fedc.  相似文献   

19.
The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacteriumare indispensible inhabitants of the plant phyllosphere. Using maize Zea maysas a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicumAPR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicumAPR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicumcells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicumor M. extorquensdid exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas campestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense,andAgrobacterium tumifaciens). Neither epiphytic nor soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, andM. fujisawaensecatalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacteriumcan protect plants against adverse environmental factors.  相似文献   

20.
Pot experiment was conducted in the year 2010 and repeated in 2011 to examine the effects of organic manure (poultry, cow dung and domestic waste) and inorganic manure (NPK 15:15:15) on the yield, soil and root population of Meloidogyne incognita-infected Ethiopian egg plant Solanum aethiopicum in a greenhouse at Kabba college of agriculture, Ahmadu Bello University, Kabba, Nigeria. Each of the organic manure was applied as soil amendment at the rate of 5t/ha and the inorganic fertiliser (NPK) was applied at the rate of 200?kg/ha, while there was an untreated control that acted as standard check. The experimental design was a completely randomised design comprising of five treatments including control and each of the treatments was replicated four times. The result of the experiment showed that all the organic manures considered and NPK fertilisers were effective in suppressing the nematode’s negative effects on the plant, as shown by the improved yield, reduced soil and root population as well as reduced gall index of the organic and inorganic manure-treated plant compared with the control. The mean fruit yield of the manure-treated plant was of the range 18?±?1 fruits and NPK fertiliser had an average of fruit number of 17, while the untreated control recorded an average fruit number of 6.5. The organic and inorganic manure-treated plants recorded bigger fruit size compared with control, and are significantly different from the control. The soil and root population as well as root gall index are reduced in all the manure treatments compared with the control and are significantly different from the control. The result of this experiment confirmed that organic manure can be utilised to manage nematode in soil endemic with root-knot nematode M. incognita.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号