首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 728 毫秒
1.
Action spectra in the red region of the spectrum for light-dependent cytosolic alkalization in leaves of C3 plants which also received a low background of blue light differed from the action spectra for light-dependent vacuolar acidification. Light above 680 nm was less effective in supporting the cytosolic alkalization reaction than light below 680 nm. In contrast, in leaves illuminated in CO2-free air the light-dependent vacuolar acidification exhibited a maximum at or even above 700 nm. When photorespiratory carbohydrate oxidation was suppressed in low oxygen, a substantially changed action spectrum of the acidification reaction resembled in shape that of the cytosolic alkalization with the exception that it was extended towards the far-red. From the presented data and from previously published data (Yin et al., 1990b, Planta 182, 253–261; Yin et al., 1990c, Planta 182, 262–269) it is concluded that in the presence of a weak background of blue light, and in the absence of CO2 which drains electrons from the electron transport chain, cyclic photophosphorylation induced by far-red light permits increased export of dihydroxyacetone phosphate from the chloroplasts into the cytosol where its oxidation increases the cytosolic energy state giving rise to increased proton transport across the tonoplast. The data do not lend support to the view that export of malate from the chloroplasts and its oxidation in the mitochondria contribute significantly to cytosolic energization in the light.Abbreviations CDCF 5-(and-6)-carboxy-2,7-dichlorofluorescein - DHAP dihydroxyacetone phosphate - OAA oxaloacetate - PGA phosphoglycerate This work was performed within the Sonderforschungsbereiche 176 and 251 of the University of Würzburg. Z.-H. Y. acknowledges support by the Leibniz program of the Deutsche Forschungs-gemeinschaft.  相似文献   

2.
Oscillations in the rate of photosynthesis of sunflower (Helianthus annuus L.) leaves were induced by subjecting leaves, whose photosynthetic apparatus had been activated, to a sudden transition from darkness or low light to high-intensity illumination, or by transfering them in the light from air to an atmosphere containing saturating CO2. It was found that at the first maximum, light-and CO2-saturated photosynthesis can be much faster than steady-state photosynthesis. Both QA in the reaction center of PS II and P700 in the reaction center of PS I of the chloroplast electron-transport chain were more oxidized during the maxima of photosynthesis than during the minima. Maxima of P700 oxidation slightly preceded maxima in photosynthesis. During a transition from low to high irradiance, the assimilatory force FA, which was calculated from ratios of dihydroxyacetone phosphate to phosphoglycerate under the assumption that the reactions catalyzed by NADP-dependent glyceraldehydephosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase are close to equilibrium, oscillated in parallel with photosynthesis. However, only one of its components, the calculated phosphorylation potential (ATP)/(ADP)(Pi), paralleled photosynthesis, whereas calculated NADPH/NADP ratios exhibited antiparallel behaviour. When photosynthetic oscillations were initiated by a transition from low to high CO2, the assimilatory force FA declined, was very low at the first minimum of photosynthesis and increased as photosynthesis rose to its second maximum. The observations indicate that the minima in photosynthesis are caused by lack of ATP. This leads to overreduction of the electron-transport chain which is indicated by the reduction of P700. During photosynthetic oscillations the chloroplast thylakoid system is unable to adjust the supply of ATP and NADPH rapidly to demand at the stoichiometric relationship required by the carbonreduction cycle.Abbreviations PGA 3-phosphoglycerate - DHAP dihydroxyacetone phosphate - P700 electron-donor pigment in the reaction enter of PS I - QA quinone acceptor in the reaction center of PS II This work received support from the Estonian Academy of Sciences, the Bavarian Ministry of Science and Art and the Sonderforschungsbereich 251 of the University of Würzburg. We are grateful for criticism by D.A. Walker, Robert Hill Institute, University of Sheffield, U.K. and by Mark Stitt, Institute of Botany, University of Heidelberg, FRG.  相似文献   

3.
Temperature dependence of intracellular pH in higher plant cells   总被引:3,自引:0,他引:3  
The recent introduction of 31P nuclear magnetic resonance spectroscopy offers a new approach to the problem of obtaining a simultaneous and direct evaluation of both the cytoplasmic and vacuolar pH in higher plant cells (J. K. M. Roberts, P.M. Ray, N. Waderlardetzky and O. Sardetzky, 1980, Nature 283, 870–872; 1981, Planta 152, 74–78). Using this method we have been able to detect a selective pH decrease of about 0.5 units at the level of the cytoplasmic compartment of maize root tips when the temperature was increased from 4 to 28°C. This effect was completely reversible with temperature. No pH variation could be detected at the level of the vacuolar compartment.  相似文献   

4.
Vacuolar pH in radish cotyledonal mesophyll cells   总被引:1,自引:0,他引:1  
D. Strack  V. Sharma  H. Felle 《Planta》1987,172(4):563-565
The vacuolar pH in cotyledonal mesophyll cells from radish (Raphanus sativus L. var. sativus) seedlings was determined from vacuoles, isolated from protoplasts through osmotic shock, by means of measurement of vacuole extracts with a pH meter and the methylamine method, and gave mean pH values of 6.28 and 6.26, respectively. Direct in situ measurements of the vacuolar pH from intact leaf tissue were recorded with pH-sensitive microelectrodes and gave a mean value of 6.0. The results are discussed with respect to possible erroneous pH measurements and the vacuolar location of specific anabolic reactions.  相似文献   

5.
6.
Summary Experiments were undertaken on the fresh water algaChara corallina to determine the form of inorganic carbon (CO2 or HCO 3 ) which enters the cell during photosynthesis at alkaline pH. Recent proposals have centered on the possibility that proton efflux in alkaline solution is able to generate, in the immediate vicinity of the cell, a sufficiently low pH to raise the partial pressure of CO2, and hence facilitate its passive permeation into the cell. Predictions have been made by modelling this situation (N.A. Walker, F.A. Smith & I.R. Cathers, 1980,J. Membrane Biol. 5751–58, J.M. Ferrier, 1980,Plant Physiol. 661198–1199), and these were tested by placing recessed-tip pH microelectrodes in the unstirred layer surrounding cells in stagnant solution (bulk pH 8.2, buffered only with 1mm HCO 3 ). Even as close as 2 m from the cell wall, the pH was typically 7.2 to 7.6 in the acid band center — over 1 pH unitgreater than that suggested by the models for CO2 entry at the necessary rate for C-fixation. Further evidence for the entry of HCO 3 , rather than CO2, at high solution pH was obtained from experiments in which the radial pH gradient in the unstirred layer was reduced. Buffer solutions containing 5mm phosphate or 5mm HEPES, raised the pH at the cell surface in the acid regions from around 7.2 to 7.8 or higher. This pH increase (reduction in acid gradient) would have greatly reduced the CO2 level at the cell surface and should, therefore, have greatly reduced the CO2-related14C-influx. However,14C-fixation was reduced by only 31% (phosphate) or 15% (HEPES), compared with buffer-free controls. Reduction of the unstirred layer thickness by fast solution flow resulted in a stimulation, and not a reduction, of14C-fixation. The similarity of our radial pH profiles near the wall with that predicted by the model (Walker et al., 1980) assuming H+–HCO 3 cotransport, together with the effects of buffer, and the results of increased solution flow rate, lead to the conclusion that cotransport of HCO 3 with H+ is the likely method of entry of inorganic carbon. Longitudinal pH profiles of theChara cell were obtained at a distance of 25 m from the wall. These revealed much sharper delineation of the acid and alkaline bands than has previously been possible with miniature pH electrodes. Profiles of local electric field, obtained with a vibrating probe, were in excellent agreement with the high resolution pH profiles. This supports the hypothesis that membrane proton transport has a role (direct) in the generation of the extracellular currents.  相似文献   

7.
8.
In a study with the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perr. using the pressure probe, Rygol et al. (1987, Planta 172, 487–4493) calculated a value for the reflection coefficient () for malate of 0.6. This value was derived from the relationship between measured changes in cell turgor pressure and malic-acid concentration, and would imply that malate was a relatively ineffective osmoticum. Here we show that the calculation of Rygol et al. (1987) involved the implicit assumption that xylem tension was constant with changing cell turgor pressure and osmotic pressure. This has been shown not to be the case using the pressure-chamber technique. We present an alternative method of deriving a weighted-mean value of a for K. daigremontiana and show that it is not significantly different from 1.0.Part of this work was carried out at the University of Edinburgh, to whom we are grateful for facilities, with funding from the Agricultural and Food Research Council, UK. Murphy is grateful to the board of management of the Glasstone Benefaction for financial support at the University of Oxford. We thank Prof. U. Zimmermann for his comments on an earlier version of this paper.  相似文献   

9.
Cyanobacterial biofilms present on stone surfaces inRoman hypogea were studied with the aim of assessingtheir deteriogenic activity on the colonisedsubstrata. In order to achieve this, non-destructivemethods were developed and applied to measure pHvariation induced via photosynthesis and respirationin representative cyanobacteria from Roman catacombs.Amperometric and potentiometric microsensors were alsoused on Scytonema biofilms in culture in orderto measure photosynthesis and assess pH decreases andincreases during dark–light periods. Measurementsof pH showed that, starting with values slightly belowneutral, the pH in Scytonema biofilms increasedby 0.24–0.77 units in the transition from dark to1000 mol photon m-2 s-1 irradiance.Comparison of photosynthesis and pH curves recordedsimultaneously on the same artificial biofilm showeda maximum increase in pH value at irradiances higherthan those saturating photosynthesis. Alkalinisationof the substrate during illumination occurred to asufficient extent to induce precipitation of mineralcompounds, especially on calcareous substrates such asthose present in Roman hypogea.  相似文献   

10.
A biochemical model of C 3photosynthesis has been developed by G.D. Farquhar et al. (1980, Planta 149, 78–90) based on Michaelis-Menten kinetics of ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase, with a potential RuBP limitation imposed via the Calvin cycle and rates of electron transport. The model presented here is slightly modified so that parameters may be estimated from whole-leaf gas-exchange measurements. Carbon-dioxide response curves of net photosynthesis obtained using soybean plants (Glycine max (L.) Merr.) at four partial pressures of oxygen and five leaf temperatures are presented, and a method for estimating the kinetic parameters of RuBP carboxylase-oxygenase, as manifested in vivo, is discussed. The kinetic parameters so obtained compare well with kinetic parameters obtained in vitro, and the model fits to the measured data give r 2values ranging from 0.87 to 0.98. In addition, equations developed by J.D. Tenhunen et al. (1976, Oecologia 26, 89–100, 101–109) to describe the light and temperature responses of measured CO2-saturated photosynthetic rates are applied to data collected on soybean. Combining these equations with those describing the kinetics of RuBP carboxylase-oxygenase allows one to model successfully the interactive effects of incident irradiance, leaf temperature, CO2 and O2 on whole-leaf photosynthesis. This analytical model may become a useful tool for plant ecologists interested in comparing photosynthetic responses of different C3 plants or of a single species grown in contrasting environments.Abbreviations PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PPFD photosynthetic photon-flux density - RuBP ribulose bisphosphate  相似文献   

11.
We devised recently a method to trap intact isolated chloroplasts on a solid support consisting of membrane filters made of cellulose nitrate (Cerovi et al., 1987, Plant Physiol. 84, 1249–1251). The addition of alkaline phosphatase to the reaction medium enabled continuous photosynthesis by spinach (Spinacia oleracea L.) chloroplasts to be sustained by hydrolysis of newly produced and exported triose phosphates and recycling of orthophosphate. In this system, simultaneous measurements of chlorophyll fluorescence and oxygen evolution were performed and their dependence on orthophosphate concentration was investigated. Optimal photosynthesis was obtained at a much higher initial orthophosphate concentration (2–4 mM) compared to intact chloroplasts in suspension. Secondary kinetics of chlorophyll fluorescence yield were observed and were shown to depend on the initial orthophosphate concentration.Abbreviations Chl chlorophyll - CSS intact isolated chloroplasts on solid support - ICS intact isolated chloroplasts in suspension - Pi orthophosphate - v rate of O2 evolution - PPFD photosynthetic photon flux density The authors wish to thank Dr. Marijana Plesniar, from the University of Novi Sad, for stimulating discussions. This work was supported by the Fond for Science of the Republic of Serbia. Z.G.C.'s visit to the Robert Hill Laboratory was supported by the British Council and the University of Sheffield.  相似文献   

12.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   

13.
The mechanism of nitrate transport across the tonoplast of barley root cells   总被引:14,自引:0,他引:14  
Nitrate-selective microelectrodes were used to measure not only nitrate activity in the cytoplasm and vacuole of barley (Hordeum vulgare L.) root cells, but also the tonoplast electrical membrane potential. For epidermal cells, the mean cytoplasmic and vacuolar pNO3 (-log10 [NO3]) values were 2.3±0.04 (n=19) and 1.41±0.03 (n=35), respectively, while for cortical cells, the mean cytoplasmic and vacuolar nitrate values were 2.58±0.18 (n=4) and 1.17±0.06 (n=13), respectively. These results indicate that the accumulation of nitrate in the vacuole must be an active process. Proton-selective microelectrodes were used to measure the proton gradient across the tonoplast to assess the possibility that nitrate transport into the vacuole is mediated by an H+/NO 3 antiport mechanism. For epidermal cells, the mean cytoplasmic and vacuolar pH values were 7.12±0.06 (n=10) and 4.93±0.11 (n=22), respectively, while for cortical cells, the mean cytoplasmic and vacuolar pH values were 7.24±0.07 (n=3) and 5.09±0.17 (n=7), respectively. Calculations of the energetics for this mechanism indicate that the observed gradient of nitrate across the tonoplast of both epidermal and cortical cells could be achieved by an H+/NO 3 antiport with a 11 stoichiometry.Abbreviations and Symbols G/F free-energy change for H+/NO 3 antiport - F Faraday constant - pHc cytoplasmic pH - pHv vacuolar pH - p[NO3]c log10 (cytoplasmic [NO 3 ]) - P[NO3]v -log10 (vacuolar [NO3]) We wish to thank Dr. K. Moore for assistance with statistical analysis.  相似文献   

14.
The role of monovalent cations in the photosynthesis of isolated intact spinach chloroplasts was investigated. When intact chloroplasts were assayed in a medium containing only low concentrations of mono- and divalent cations (about 3 mval l-1), CO2-fixation was strongly inhibited although the intactness of chloroplasts remained unchanged. Addition of K+, Rb+, or Na+ (50–100 mM) fully restored photosynthesis. Both the degree of inhibition and restoration varied with the plant material and the storage time of the chloroplasts in low-salt medium. In most experiments the various monovalent cations showed a different effectiveness in restoring photosynthesis of low-salt chloroplasts (K+>Rb+>Na+). Of the divalent cations tested, Mg2+ also restored photosynthesis, but to a lesser extent than the monovalent cations.In contrast to CO2-fixation, reduction of 3-phosphoglycerate was not ihibited under low-salt conditions. In the dark, CO2-fixation of lysed chloroplasts supplied with ATP, NADPH, and 3-phosphoglycerate strictly required the presence of Mg2+ but was independent of monovalent cations. This finding excludes a direct inactivation of Calvin cycle enzymes as a possible basis for the inhibition of photosynthesis under low-salt conditions.Light-induced alkalization of the stroma and an increase in the concentration of freely exchangeable Mg2+ in the stroma, which can be observed in normal chloroplasts, did not occur under low-salt conditions but were strongly enhanced after addition of monovalent cations (50–100 mM) or Mg2+ (20–50 mM).The relevance of a light-triggered K+/H+ exchange at the chloroplast envelope is discussed with regard to the light-induced increase in the pH and the Mg2+ concentration in the stroma, which are thought to be obligatory for light activation of Calvincycle enzymes.  相似文献   

15.
Hubert Felle 《Planta》1988,174(4):495-499
In epidermal cells of maize (Zea mays L.) coleoptiles, cytosolic pH (pHc), cytosolic free calcium, membrane potential and changes thereof were monitored continuously and simultaneously (pHc/, m, Ca2+/ m) using double-barrelled ion-sensitive microelectrodes. In the resting cells the cytosolic pH was 7.3–7.5 and the concentration of free calcium was 119±24 nM. One-micromolar indole-3-acetic acid (IAA), added to the external medium at pH 6.0 triggered oscillations in m, pHc and free calcium with a period of 20 to 30 min. Acidification of the cytosolic pH increased the cytosolic free calcium. The m oscillations are attributed to changes in activity of the H+-extrusion pump at the plasmalemma, triggered off by pH and controlled by pH regulation (pH oscillation). The origin of the pHc and Ca2+ changes remains unclear, but is possibly caused by auxin-receptor-induced lipid breakdown and subsequent second-messenger formation. It is suggested that the observed cytosolic pH and Ca2+ changes are intrinsically interrelated, and it is concluded that this onset of regulatory processes through the phytohormone IAA is indicative of calcium and protons mediating early auxin action in maize coleoptiles. It is further concluded that the double-barrelled ion-sensitive microelectrode is an invaluable tool for investigating in-vivo hormone action in plant tissues.Abbreviations and symbols FC fusicoccin - IAA indole-3-acetic acid - Mes 2-(N-morpholino)ethanesulfonic acid - pHc cytosolic pH - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol - m membrane potential difference (mV)  相似文献   

16.
The presence of polygalacturonase and its correlation with the formation of lateral roots in leek (Allium porrum L.) seedlings have been investigated. During root growth, a steady increase in polygalacturonase activity was associated with that of the lateral root primordia. Fractionation of root extract by fast protein liquid chromatography resolved at least two polygalacturonase isoforms. One of the isoforms, a 75-kdalton protein, strongly reacted on Western blots probed with a polyclonal antibody raised against tomato polygalacturonase. It also reacted with both polyclonal and monoclonal antisera raised against Fusarium moniliforme polygalacturonase. In situ localization with these three antibodies showed that polygalacturonase was present over the meristems of lateral root primordia. Antibodies against pectins (Knox et al. 1990, Planta 181, 512–521) detected large amounts of pectic material filling the area between the apex of the primordium and the mother root tissues. We suggest that a polygalacturonase plays an important role in leek root morphogenesis, particularly during lateral root outgrowth.Abbreviations FPLC fast protein liquid chromatography - RGU one unit of polygalacturonase activity - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis The Authors are grateful to Dr. Dean Della Penna (Department of Vegetable Crops, University of California, Davis, Calif., USA) for generously providing the polyclonal antibody raised against the tomato polygalacturonase. This research was supported by National Research of Italy, Special project RAISA, Subproject N2, N360.  相似文献   

17.
18.
The concentrations of vacuolar solutes in different cells of the upper epidermis of the third leaf of barley (Hordeum vulgare L.) were studied in leaves of different ages grown under different irradiances (120 or 400 mol photons·m–2·s–1). Vacuolar saps were extracted from individual cells located at various positions between adjacent veins and were analysed for their osmolality and the concentrations of K+, Ca2+, Cl, NO 3 and malate. Each ion showed a cell-specific distribution within the epidermis that was both quantitatively and qualitatively dependent on the leaf developmental stage and on the light level. During leaf ageing, Ca2+ accumulated preferentially in interstomatal cells (i.e. those located between longitudinally adjacent stomata) at concentrations up to 180 mM. Under low light conditions, this was accompanied by a more or less equal decrease in K+ concentration. Epidermal malate was found only in plants grown continuously or transiently under the high irradiance and reached highest concentrations in trough and interstomatal cells (60 to 150mM). Chloride concentration was highest in cells overlying the veins (designated as ridge cells) and lowest in cells located between the veins (trough cells), while NO 3 exhibited the reverse distribution, although the precise patterns were age-dependent. Epidermal osmolality increased with age, but the intercellular differences in the osmolalities were small compared to differences in vacuolar solute composition. A cell-to-cell analysis of the region surrounding the stomata showed that the steepest changes in the vacuolar solute composition of epidermal cells occurred at the boundary between ridge or trough cells and the adjacent near-stomatal cells.Abbreviations EDX analysis energy dispersive X-ray analysis We wish to thank Andrew Davies and Alison Bell (Bangor) for their technical advice. This work was financed as an Agricultural and Food Research Council Linked Research Group project between Bangor and Rothamsted (grants LR5/187 and 521).  相似文献   

19.
Macroscopic instantaneous and time-dependent currents have been measured in the vacuolar membrane of Beta vulgaris using a patch clamp configuration analogous to whole cell mode. At low cytosolic Ca2+ and in the absence of Mg2+, only an instantaneous current was observed. This current is carried predominantly by cations (PKPCl 71, pnapcl 41 and arginine is also conducted). The instantaneous current can be activated by ATP4– (e.g., ATP-activated mean K+ current density was –20 mA.m–2 at a membrane voltage of –20 mV) and by increasing cytosolic pH and Mg2+ (raising Mg2+ from 0 to 0.4 mm induced a mean current density increase of –7 mA.m–2 at –20 mV). Such current can be activated by simultaneous addition of putative in vivo concentrations of ATP4–/MgATP/Mg free 2+ (in the presence of bafilomycin to inhibit the vacuolar ATPase) and further modulated by cytosolic pH. With vacuolar K+ concentration greater than that of the cytosol, activation of the instantaneous current would mediate vacuolar K+ release over the range of physiological membrane voltage. It is argued that the ATP4–-activated current, in addition to acting as a K+ mobilization pathway, could provide a counter-ion (shunt) conductance, allowing the two electrogenic H+ pumps which reside in the vacuolar membrane to acidify the vacuolar lumen.A separate time-dependent current, which was not observed at low Ca2+ concentrations (less than 500 nm) could also be elicited by addition of Mg2+ at the cytoplasmic membrane face. This current was stimulated by increasing cytoplasmic pH.The authors are grateful to the BBSRC for financial support (Grant PG87/529) and to the Royal Society (University Research Fellowship to J.M.D.). We thank C. Abbott, K. Partridge and J. Robinson for plant cultivation; A. Amtmann, A. Bertl, D. Gradmann and G. Thiel for helpful discussion.  相似文献   

20.
Observations regarding floral fragrance and the rhythmicity of its emission in four plant species are reported. In the case of flowers of Hoya carnosa R. Br. which are characterized by circadian rhythmicity of scentedness (R. Altenburger and P. Matile, 1988, Planta 174, 248–252), temperature compensation of the free-running period as well as persistence of oscillations in permanent darkness have been demonstrated. A hitherto unidentified component of fragrance turned out to be identical to an unusual sesquiterpene recently discovered in cardamom oil (B. Maurer et al., 1986, Tetrahedron Lett. 27, 2111–2112). In Stephanotis floribunda Brongs. the rhythmic emission of fragrance is circadian in nature, but in a constant environment the oscillations of individual components are increasingly asynchronous. In excised flowers of Odontoglossum constrictum Lindl. the diurnal oscillations observed in a natural photoperiod are abolished under constant environmental conditions. They are resumed upon the return to a 1212-h photoperiod. The absence of circadian control could also be demonstrated in excised flowers of Citrus medica L. In this species, too, the daily maxima of scent emission reappear upon the transfer of flowers to a 1212-h light/ dark cycle. Results obtained upon the comparative analysis of volatiles in the headspace above the flowers and in petal extract indicate that the relative abundance of an individual compound in the floral fragrance is not a function of differential volatility.Abbreviations DL 1212 h photoperiod - DD continuous darkness - GLC gas-liquid chromatography - LL continuous illumination The authors are indebted to R. Kaiser, Givaudon Corp.for kindly carrying out the identifikation of volatiles by gas-liquid chromalography/mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号