首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Xq26-q27 region of the X chromosome is interesting, as an unusually large number of genes and anonymous RFLP probes have been mapped in this area. A number of studies have used classical linkage analysis in families to map this region. Here, we use mutant human T-lymphocyte clones known to be deleted for all or part of the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene, to order anonymous probes known to map to Xq26. Fifty-seven T-cell clones were studied, including 44 derived from in vivo mutation and 13 from in vitro irradiated T-lymphocyte cultures. Twenty anonymous probes (DXS10, DXS11, DXS19, DXS37, DXS42, DXS51, DXS53, DXS59, DXS79, DXS86, DXS92, DXS99, DXS100d, DXS102, DXS107, DXS144, DXS172, DXS174, DXS177, and DNF1) were tested for codeletion with the hprt gene by Southern blotting methods. Five of these probes (DXS10, DXS53, DXS79, DXS86 and DXS177) showed codeletion with hprt in some mutants. The mutants established the following unambiguous ordering of the probes relative to the hprt gene: DXS53-DXS79-5'hprt3'-DXS86-DXS10-DXS177 . The centromere appears to map proximal to DXS53. These mappings order several closely linked but previously unordered probes. In addition, these studies indicate that rather large deletions of the functionally haploid X chromosome can occur while still retaining T-cell viability.  相似文献   

2.
We have determined the nucleotide sequences of 10 intragenic human HPRT gene deletion junctions isolated from thioguanine-resistant PSV811 Werner syndrome fibroblasts or from HL60 myeloid leukemia cells. Deletion junctions were located by fine structure blot hybridization mapping and then amplified with flanking oligonucleotide primer pairs for DNA sequence analysis. The junction region sequences from these 10 HPRT mutants contained 13 deletions ranging in size from 57 bp to 19.3 kb. Three DNA inversions of 711, 368, and 20 bp were associated with tandem deletions in two mutants. Each mutant contained the deletion of one or more HPRT exon, thus explaining the thioguanine-resistant cellular phenotype. Deletion junction and donor nucleotide sequence alignments suggest that all of these HPRT gene rearrangements were generated by the nonhomologous recombination of donor DNA duplexes that share little nucleotide sequence identity. This result is surprising, given the potential for homologous recombination between copies of repeated DNA sequences that constitute approximately a third of the human HPRT locus. No difference in deletion structure or complexity was observed between deletions isolated from Werner syndrome or from HL60 mutants. This suggests that the Werner syndrome deletion mutator uses deletion mutagenesis pathway(s) that are similar or identical to those used in other human somatic cells.  相似文献   

3.
Inherited mutation of hypoxanthine guanine phosphoribosyltransferase, (HPRT) gives rise to Lesch-Nyhan syndrome or HPRT-related gout. We have identified 34 mutations in 28 Japanese, 7 Korean, and 1 Indian families with the patients manifesting different clinical phenotypes, including two rare cases in female subjects, by the analysis of all nine exons of HPRT from the genomic DNA and reverse transcribed mRNA using PCR technique coupled with direct sequencing.  相似文献   

4.
We have determined the genetic stability of three independent intragenic human HPRT gene duplications and the structure of each duplication at the nucleotide sequence level. Two of the duplications were isolated as spontaneous mutations from the HL60 human myeloid leukemia cell line, while the third was originally identified in a Lesch-Nyhan patient. All three duplications are genetically unstable and have a reversion rate approximately 100-fold higher than the rate of duplication formation. The molecular structures of these duplications are similar, with direct duplication of HPRT exons 2 and 3 and of 6.8 kb (HL60 duplications) or 13.7 kb (Lesch-Nyhan duplication) of surrounding HPRT sequence. Nucleotide sequence analyses of duplication junctions revealed that the HL60-derived duplications were generated by unequal homologous recombination between clusters of Alu repeats contained in HPRT introns 1 and 3, while the Lesch-Nyhan duplication was generated by the nonhomologous insertion of duplicated HPRT DNA into HPRT intron 1. These results suggest that duplication substrates of different lengths can be generated from the human HPRT exon 2-3 region and can undergo either homologous or nonhomologous recombination with the HPRT locus to form gene duplications.  相似文献   

5.
Linkage of the gene responsible for an X-linked early onset parkinsonism disorder with mental retardation (McKusick 311510) to DNA probes that detect restriction fragment length polymorphisms is described. The disease gene is linked to the F8C gene, and to DNA probes detecting polymorphic loci DXS52, DXS15, DXS134, and DXS374 with maximum lod scores at theta = 0 of 5.08, 5.19, 5.00, 5.03, and 4.46, respectively. Multipoint linkage analysis gives a maximum multipoint lod score of 6.75 at the F8C gene. This places the disease gene in chromosomal region Xq27.3-qter.  相似文献   

6.
7.
Summary The possible influence of the fragile X mutation at Xq27 on the expression of the neighbouring gene (at Xq26) for hypoxanthine phosphoribosyl transferase (HPRT) was studied by determination of the levels of HPRT-RNA and HPRT enzyme activity in fibroblast cell cultures from 7 fragile X patients. These levels were lower (although not statistically significantly lower) than in normal fibroblast cultures. Hence, these data do not support the notion of a major effect of the fragile X mutation on the expression of the HPRT gene.  相似文献   

8.
Summary An Indiana family segregating a syndrome of X-linked mental retardation and skeletal anomalies was tested for linkage of the mutant gene to X-chromosome molecular markers. Lod scores of 3.27 and 3.06 (-0) for the molecular probes St14-1 (DXS52) and Dx13 (DXS15), respectively, indicate that the disease gene is located in the terminal portion of Xq.  相似文献   

9.
Two genetic loci, RP2 and RP3, for X-linked retinitis pigmentosa (XLRP) have been localized to Xp11.3-11.23 and Xp21.1, respectively. RP3 appears to account for 70% of XLRP families; however, mutations in the RPGR gene (isolated from the RP3 region) are identified in only 20% of affected families. Close location of XLRP loci at Xp and a lack of unambiguous clinical criteria do not permit assignment of genetic subtype in a majority of XLRP families; nonetheless, in some pedigrees, both RP2 and RP3 could be excluded as the causative locus. We report the mapping of a novel locus, RP24, by haplotype and linkage analysis of a single XLRP pedigree. The RP24 locus was identified at Xq26-27 by genotyping 52 microsatellite markers spanning the entire X chromosome. A maximum LOD score of 4.21 was obtained with DXS8106. Haplotype analysis assigned RP24 within a 23-cM region between the DXS8094 (proximal) and DXS8043 (distal) markers. Other chromosomal regions and known XLRP loci were excluded by obligate recombination events between markers in those regions and the disease locus. Hemizygotes from the RP24 family have early onset of rod photoreceptor dysfunction; cone receptor function is normal at first, but there is progressive loss. Patients at advanced stages show little or no detectable rod or cone function and have clinical hallmarks of typical RP. Mapping of the RP24 locus expands our understanding of the genetic heterogeneity in XLRP and will assist in development of better tools for diagnosis.  相似文献   

10.
11.
A 40-year-old normouricemic (5.5 mg/dl) male showed 46% hemolysate and 37% lymphoblast hypoxanthine phosphoribosyltransferase (HPRT) activities but was otherwise completely free of symptoms. His genomic DNA and cDNA had a missense base substitution (CAT-to-CGT in codon 60) leading to the amino-acid substitution His-to-Arg. Western blot analysis revealed that the amount of HPRT protein in lymphoblasts from this individual was 25%–50% of normal cells, suggesting that the decrease in the amount of enzyme protein was responsible for the partial deficiency. This provides the first clear evidence that a genomic missense mutation at the HPRT locus leads to a decrease in the amount of the enzyme protein but that otherwise it has no evident adverse effects in the hemizygote (asymptomatic mutation). Received: 15 May 1996 / Revised: 22 August 1996  相似文献   

12.
The genomic sequences recognized by the anonymous probe 767 (DXS115) are localized to two sites within Xq28. One site lies within intron 22 of the factor VIII gene (FBC). Physical mapping suggests that the second site lies within 1.2 megabases of the F8C gene. The RFLPs detected by 767 are located within the second site. Genetic data suggest that F8C and DXS115 are tightly linked (theta max = .04; Zmax = 8.30). Recombination events in meioses informative for DXS52 (St14), DXS115, and F8C suggest that DXS115 and F8C lie distal to DXS52.  相似文献   

13.
We have examined seven pedigrees that include individuals with a recently described X-linked form of severe mental retardation associated with alpha-thalassemia (ATR-X syndrome). Using hematologic and molecular approaches, we have shown that intellectually normal female carriers of this syndrome may be identified by the presence of rare cells containing HbH inclusions in their peripheral blood and by an extremely skewed pattern of X inactivation seen in cells from a variety of tissues. Linkage analysis has localized the ATR-X locus to an interval of approximately 11 cM between the loci DXS106 and DXYS1X (Xq12-q21.31), with a peak LOD score of 5.4 (recombination fraction of 0) at DXS72. These findings provide the basis for genetic counseling, assessment of carrier risk, and prenatal diagnosis of the ATR-X syndrome. Furthermore, they represent an important step in developing strategies to understand how the mutant ATR-X allele causes mental handicap, dysmorphism, and down-regulation of the alpha-globin genes.  相似文献   

14.
A family with X-linked mental retardation characterized by severe mental retardation, speech and behavioral abnormalities, and seizures in affected male patients has been found to have a G1141C transversion in the creatine-transporter gene SLC6A8. This mutation results in a glycine being replaced by an arginine (G381R) and alternative splicing, since the G-->C transversion occurs at the -1 position of the 5' splice junction of intron 7. Two female relatives who are heterozygous for the SLC6A8 mutation also exhibit mild mental retardation with behavior and learning problems. Male patients with the mutation have highly elevated creatine in their urine and have decreased creatine uptake in fibroblasts, which reflects the deficiency in creatine transport. The ability to measure elevated creatine in urine makes it possible to diagnose SLC6A8 deficiency in male patients with mental retardation of unknown etiology.  相似文献   

15.
16.
Mutations in the X-linked hypoxanthine-guanine phosphoribosyl transferase gene (HPRT) result in deficiencies of HPRT enzyme activity, which may cause either a severe form of gout or Lesch-Nyhan syndrome depending on the residual enzyme activity. Mutations leading to these diseases are heterogeneous and include DNA base substitutions, DNA deletions, DNA base insertions and errors in RNA splicing. Identification of mutations has been performed at the RNA and DNA level. Sequencing genomic DNA of the HPRT gene offers the possibility of direct diagnostic analysis independent on the expression of the mature HPRT mRNA. We describe a Dutch and a Spanish family, in which the Lesch-Nyhan syndrome and a severe partial HPRT-deficient phenotype, respectively, were diagnosed. Direct sequencing of the exons coding for the HPRT gene was performed in both families. Two new exon 3 mutations have been identified. At position 16676, the normally present G was substituted by an A in the Dutch kindred (HPRTUtrecht), and led to an arginine for glycine change at residue 70. At position 16680, the G was substituted by a T in the Spanish family (HPRTMadrid); this substitutes a valine for glycine at residue 71. These new mutations are located within one of the clusters of hotspots in exon 3 of the HPRT gene in which HPRTYale and HPRTNew Haven have previously been identified.  相似文献   

17.
18.
19.
20.
The kinds and locations of mutations in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase (hprt) gene of 75 independent mutants, derived from N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-treated normal human fibroblasts, were characterized by direct sequencing of mRNA-polymerase chain reaction (mRNA-PCR)-amplified cDNA. Treatment of human cells with low (6 or 8 microM) or high (10 or 12 microM) doses of MNNG resulted in 35-fold or 150-fold average increases in mutation frequency, respectively. A high frequency of mutants lacking a complete exon was observed in both groups. Further characterization of half of these mutants by DNA-PCR amplification of intron-exon boundaries showed that they contained base substitutions. The kinds of base substitutions differed distinctly between these two groups. In the low dose group, a broad mutational spectrum was observed: ten out of the 31 base substitutions were A.T to G.C transitions, six contained G.C to A.T transitions, and the other 15 exhibited transversions. In contrast, the majority (84%) of base substitutions among the high dose group were G.C to A.T transitions; the others (16%) were transversions. All of the 32 G.C to A.T transitions were located on the non-transcribed strand, assuming that the causative premutational lesion was O6-methylguanine. These results indicate preferential repair of lesions located on the transcribed strand. In addition, G.C to A.T and A.T to G.C transitions preferentially occurred at positions with guanine and thymine at the adjacent 5' position, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号