首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MH2 and MC29 are highly related myc-containing avian retroviruses. We found that MH2, unlike MC29, synthesizes a 2.6-kilobase subgenomic mRNA containing myc sequences as well as sequences from the 5' end of the genome. A 57-kilodalton protein containing myc, but not gag, sequences (p57myc) was detected by hybrid selection and in vitro translation of RNA from MH2-transformed cells. Gradient separation of MH2 intracellular RNAs indicated that p57myc is encoded by the subgenomic RNA. A highly oncogenic MH2 virus variant (MH2YS3) (M. Linial, Virology 119:382-391, 1982) was shown to encode only p57myc and not P100, the previously described MH2-encoded polyprotein (Hu et al., Virology, 89:162-178, 1978). Cells transformed by subclones of this virus synthesized predominantly the 2.6-kilobase RNA rather than genomic 5.4-kilobase RNA. These results suggest that only p57myc is required for maintenance of the transformed state after MH2 infection.  相似文献   

2.
By cloning fragments of plasmid DNA, we have shown that RK2 expresses incompatibility by more than one mechanism. One previously identified (R. J. Meyer, Mol. Gen, Genet. 177:155--161, 1979; Thomas et al., Mol. Gen. Genet. 181:1--7, 1981) determinant for incompatibility is linked to the origin of plasmid DNA replication. When cloned into a plasmid vector, this determinant prevents the stable inheritance of a coresident RK2. However, susceptibility to this mechanism of incompatibility requires an active RK2 replicon and is abolished if another replicator is provided. We have also cloned a second incompatibility determinant, encoded within the 54.1- to 56.4-kilobase region of RK2 DNA, which we call IncP-1(II). An RK2 derivative remains sensitive to IncP-1(II), even when it is not replicating by means of the RK2 replicon. The 54.1- to 56.4-kilobase DNA does not confer susceptibility to the IncP-1(II) mechanism, nor does it encode a detectable system for efficient plasmid partitioning. The incompatibility may be related to the expression of genes mapping in the 54.1- to 56.4-kilobase region, which are required for plasmid maintenance and suppression of plasmid-encoded killing functions.  相似文献   

3.
4.
5.
Two cDNA clones for mitochondrial adenylate kinase were isolated from a cDNA library of bovine liver poly(A)+ RNA by using synthetic oligodeoxynucleotides as probes. The clone containing a 0.9-kilobase insert had the reading frame for a 241-residue protein (AK2A), while the other clone containing a 1.6-kilobase insert had the frame for a 234-residue protein (AK2B). Nucleotide sequences of these two clones were the same in the 5' portion up to the coding sequence for the 233rd residue, but different in the remaining 3' portions. The reported amino acid sequence of mitochondrial adenylate kinase from bovine heart corresponded to AK2A. Neither AK2A nor AK2B had a cleavable NH2-terminal presequence as that found in other imported mitochondrial proteins. RNA blot analysis of poly(A)+ RNAs from bovine liver and heart revealed three species of mRNA with approximate sizes of 0.9, 1.4, and 1.7 kilobases. The 1.7- and 1.4-kilobase species were specific for AK2B, whereas the 0.9-kilobase species was specific for AK2A. In the liver, the 1.7-kilobase mRNA was more abundant, whereas in the heart the 0.9-kilobase mRNA was predominant. The 1.4-kilobase mRNA was present only in the heart. The AK2A- and AK2B-coding sequences were expressed in Escherichia coli cells under the control of trc promoter. Both the products reverted the temperature-sensitive phenotype of the adenylate kinase mutant of E. coli.  相似文献   

6.
The structure of the mouse Cyp2g1 gene was determined to identify regulatory regions important for its olfactory mucosa-specific expression. Two Cyp2g1 genomic clones were isolated and characterized. A 3.6-kilobase 5'-flanking sequence was used to prepare a Cyp2g1--LacZ fusion gene for transgenic mice production. Transgene expression, as determined by beta-galactosidase activity in tissue extracts, was detected in the olfactory mucosa, but not in any other tissues examined, in five different transgenic lines. Thus, the 3.6-kilobase fragment contained regulatory elements sufficient for olfactory mucosa-specific and proper developmental expression of the reporter gene. However, histological and immunohistochemical studies indicated that the expression of the transgene in the olfactory mucosa was patchy and the cellular expression patterns of the transgene did not exactly match that of the endogenous gene. These results implicate the presence of additional regulatory sequences that are necessary for the correct cell type-selectivity within the olfactory mucosa.  相似文献   

7.
8.
Plasmids ColE2-CA42 (6.1 kilobases) and ColE2-P9 (6.8 kilobases) were found to have homologous (4.3-kilobase) DNA segments which contain their colicin and immunity genes. The relatedness of their immunity proteins was verified by determining their amino acid compositions and N-terminal sequences. These characteristics were compared with those of ColE3-CA38.  相似文献   

9.
The herpes simplex virus type 2 thymidine kinase gene has been mapped to a position colinear with the herpes simplex virus type 1 thymidine kinase gene and cloned within a 4.0-kilobase fragment in pBR 322.  相似文献   

10.
We have isolated the rat gene encoding isoform 3 of the plasma membrane Ca(2+)-ATPase (PMCA3) and have determined its exon/intron organization. The PMCA3 gene contains 24 exons and spans approximately 70 kilobases. In addition, we have analyzed the splicing and polyadenylation patterns leading to the production of an alternative 4.5-kilobase (PMCA3) skeletal muscle mRNA that differs from the previously characterized 7.5-kilobase brain mRNA (Greeb, J., and Shull, G. E. (1989) J. Biol. Chem. 264, 18569-18576). cDNA cloning, Northern blot hybridization, and polymerase chain reaction analyses of the 4.5-kilobase mRNA demonstrate (i) the inclusion of a novel 68-nucleotide exon (exon 22) that is specific for skeletal muscle and significantly alters the calmodulin-binding domain and (ii) the utilization of an alternative polyadenylation site following exon 23 which eliminates the last coding exon (exon 24) and 3'-untranslated sequence of the 7.5-kilobase mRNA. We have also identified a 42-nucleotide exon (exon 8) that is included in the skeletal muscle PMCA3 mRNAs, but may be either included or excluded in the brain mRNAs. Exon 8 is inserted immediately before the sequence encoding a putative phospholipid binding domain and thus may alter regulatory interactions of the enzyme with acidic phospholipids.  相似文献   

11.
12.
The PUT2 gene was isolated on a 6.5-kilobase insert of a recombinant DNA plasmid by functional complementation of a put2 (delta 1-pyrroline-5-carboxylate dehydrogenase-deficient) mutation in Saccharomyces cerevisiae. Its identity was confirmed by a gene disruption technique in which the chromosomal PUT2+ gene was replaced by plasmid DNA carrying the put2 gene into which the S. cerevisiae HIS3+ gene had been inserted. The cloned PUT2 gene was used to probe specific mRNA levels: full induction of the PUT2 gene resulted in a 15-fold increase over the uninduced level. The PUT2-specific mRNA was approximately 2 kilobases in length and was used in S1 nuclease protection experiments to locate the gene to a 3-kilobase HindIII fragment. When delta 1-pyrroline-5-carboxylate dehydrogenase activity levels were measured in strains carrying the original plasmid, as well as in subclones, similar induction ratios were found as compared with enzyme levels in haploid yeast strains. Effects due to increased copy number or position were also seen. The cloned gene on a 2 mu-containing vector was used to map the PUT2 gene to chromosome VIII.  相似文献   

13.
14.
We have previously isolated, from wild-type MH2 virus that contains the two oncogenes mil and myc, mutants defective in one or the other oncogene product. We report here the molecular cloning and extensive characterization of MH2 CL25 provirus lacking the v-mil oncogene. Our results indicate that this virus corresponds to the propagation of the 2.8-kilobase subgenomic RNA of MH21.  相似文献   

15.
The SNF2 and SNF5 genes are required for derepression of SUC2 and other glucose-repressible genes of Saccharomyces cerevisiae in response to glucose deprivation. Previous genetic evidence suggested that SNF2 and SNF5 have functionally related roles. We cloned both genes by complementation and showed that the cloned DNA was tightly linked to the corresponding chromosomal locus. Both genes in multiple copy complemented only the cognate snf mutation. The SNF2 gene encodes a 5.7-kilobase RNA, and the SNF5 gene encodes a 3-kilobase RNA. Both RNAs contained poly(A) and were present in low abundance. Neither was regulated by glucose repression, and the level of SNF2 RNA was not dependent on SNF5 function or vice versa. Disruption of either gene at its chromosomal locus still allowed low-level derepression of secreted invertase activity, suggesting that these genes are required for high-level expression but are not directly involved in regulation. Further evidence was the finding that snf2 and snf5 mutants failed to derepress acid phosphatase, which is not regulated by glucose repression. The SNF2 and SNF5 functions were required for derepression of SUC2 mRNA.  相似文献   

16.
The effects of deletion of various regions of the pKM101 genome on several phenotypes conferred by pKM101 in Escherichia coli WP2 cells were investigated. Differences in the response of cells carrying pKM101 or various pKM101 deletion derivatives to the mutagenic effects of phleomycin E can be attributed to differences in sensitivity to the lethal effects of phleomycin E. Resistance to phleomycin E is conferred by the pKM101 mucAB genes (or an adjacent gene) but observed only with pKM101 derivatives which have lost a 2.2-kilobase (BalI-KpnI-2) segment which completely includes the pKM101 endonuclease gene nuc. A pKM101 slow-growth determinant, distinct from the slo gene, has also been identified and localized in the 2.4-kilobase (BalI-KpnI-3) segment which is adjacent to the nuc gene. Loss of this region does not appear to substantially influence the toxic or mutagenic effects of phleomycin E.  相似文献   

17.
A Toh-e  S Tada    Y Oshima 《Journal of bacteriology》1982,151(3):1380-1390
DNA plasmids were detected in two independent strains of Saccharomyces rouxii among 100 yeast strains other than Saccharomyces cerevisiae tested. The plasmids, pSR1 and pSR2, had almost the same mass (approximately 4 X 10(6) daltons) as 2-micrometers DNA of S. cerevisiae. pSR1 and pSR2 gave identical restriction maps with restriction endonucleases BamHI, EcoRI, HincII, HindIII, and XhoI, and both lacked restriction sites for PstI, SalI, and SmaI. These maps, however, differed significantly from that of S. cerevisiae 2-micrometers DNA. Restriction analysis also revealed two isomeric forms of each plasmid and suggested the presence of a pair of inverted repeat sequences in the molecules where intramolecular recombination took place. DNA-DNA hybridization between the pSR1 and pSR2 DNAs indicated significant homology between their base sequences, whereas no homology was detected between pSR1 and pJDB219, a chimeric plasmid constructed from a whole molecule of 2-micrometers DNA, plasmid pMB9, and a 1.2-kilobase DNA fragment of S. cerevisiae bearing the LEU2 gene. A chimeric plasmid constructed with pSR1 and YIp1, the larger EcoRI-SalI fragment of pBR322 ligated with a 6.1-kilobase DNA fragment of S. cerevisiae bearing the HIS3 gene, could replicate autonomously in an S. cerevisiae host and produced isomers, presumably by intramolecular recombination at the inverted repeats.  相似文献   

18.
Cloning of the Escherichia coli release factor 2 gene.   总被引:9,自引:5,他引:4       下载免费PDF全文
The protein release factor 2 (RF2) participates in Escherichia coli polypeptide chain termination with codon specificity (UAA or UGA). A colicin E1 recombinant identified in the Carbon and Clarke E. coli bank contains the protein release factor 2 gene. A 1.7-kilobase E. coli fragment has been subcloned into the plasmid pUC9 vector. Bacterial cells, containing the plasmid recombinant, produce elevated levels of protein release factor 2 as detected by an immune precipitation assay and in vitro measurement of UGA-directed peptide chain termination and [3H]UGA codon recognition.  相似文献   

19.
20.
Mutations (paar) in herpes simplex virus (HSV) which confer resistance to phosphonoacetic acid involve genes associated with virus-induced DNA polymerase activity. Two mutants of HSV (HSV-1 tsH and HSV-2 ts6) produce a thermolabile DNA polymerase activity. In this study, the ts lesions present in these mutants and those present in two independent phosphonoacetic acid-resistant mutants of HSV-1 and HSV-2 (paar-1 and paar-2) have been physically mapped by restriction endonuclease analysis of recombinants produced between HSV-1 and HSV-2 by intertypic marker rescue. All four mutations mapped within a 3.3-kilobase pair region around map unit 40. The accuracy of the method is reflected by the mapping results for tsH and paar-2, which were found to lie in the same 1.3-kilobase pair region. paar-1 was found to lie to the right of ts6. Virus-induced DNA polymerase is thought to have a molecular weight of 150,000, necessitating a gene with a coding capacity of 4.6 kilobase pairs. The four mutations mapped in this study all lie within a region smaller than this, but the results do not yet prove that all four lesions reside in this or any single gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号