首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinamide adenine dinucleotide synthetases (NADS) catalyze the amidation of nicotinic acid adenine dinucleotide (NAAD) to yield the enzyme cofactor nicotinamide adenine dinucleotide (NAD). Here we describe the crystal structures of the ammonia-dependent homodimeric NADS from Escherichia coli alone and in complex with natural substrates and with the reaction product NAD. The structures disclosed two NAAD/NAD binding sites at the dimer interface and an adenosine triphosphate (ATP) binding site within each subunit. Comparison with the Bacillus subtilis NADS showed pronounced chemical differences in the NAAD/NAD binding sites and less prominent differences in the ATP binding pockets. In addition, the E. coli NADS structures revealed unexpected dynamical rearrangements in the NAAD/NAD binding pocket upon NAAD-to-NAD conversion, which define a catalysis state and a substrate/product exchange state. The two states are adopted by concerted movement of the nicotinysyl moieties of NAAD and NAD, Phe-170, and residues 224-228, which may be triggered by differential coordination of a magnesium ion to NAAD and NAD. Phylogenetic structure comparisons suggest that the present results are relevant for designing species-specific antibiotics.  相似文献   

2.
A method is described for the determination of nicotinamide adenine dinucleotide synthetase (NADS) activity in human blood. Using high-performance liquid chromatography (HPLC), the formed NAD is separated from the substrates and the other blood components in less than 13 min. The activity of NADS determined by HPLC is closely correlated with that determined by the conventional spectrophotometric method, which requires two steps of enzyme reaction. The present method is simple and reliable and facilitates the routine analysis of NADS activity.  相似文献   

3.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a ubiquitous second messenger providing a Ca2+ trigger in a wide range of cell types. However, its metabolism is not well understood. Here, we demonstrate the presence of endogenous NAADP in HeLa cells. CD38, a promiscuous enzyme described to be involved in NAADP metabolism, was not detectable in HeLa cells. In cell-free extracts of HeLa cells, NAADP was degraded to nicotinic acid adenine dinucleotide (NAAD). The enzyme was enriched in membranes (10,000 × g pellet) and displayed characteristics typical of alkaline phosphatase (AP), e.g. pH optimum at 8–9 and sensitivity to the inhibitors l-homoarginine and l-leucine. Importantly, NAADP at physiological concentrations (50–100 nm) was degraded to NAAD. Expression of AP isoenzymes was analyzed in HeLa cells. Based on the results together with inhibitor studies, the placental AP isoform emerged as the best candidate for NAADP degradation in HeLa cells. In contrast to HeLa cells, Jurkat T cells or HEK293 cells did not express any AP isoenzymes and did not display any NAADP 2′-phosphatase activity. Finally, the placental AP isoform was expressed heterologously in HEK293 cells, resulting in reconstitution of NAADP 2′-phosphatase activity in cell-free extracts. On the basis of the results, we provide evidence for AP as the metabolizing enzyme of NAADP in cells that do not express CD38.  相似文献   

4.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [(32)P-5-azido]nicotinic acid adenine dinucleotide phosphate ([(32)P-5N(3)]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [(32)P-5N(3)]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N(3)-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [(32)P-5N(3)]NAADP binding was saturable and displayed high affinity (K(d) ~10 nM) in both binding and photolabeling experiments. [(32)P-5N(3)]NAADP photolabeling was irreversible in a high K(+) buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [(32)P-5N(3)]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs.  相似文献   

5.
ADP-ribosyl cyclases are structurally conserved enzymes that are best known for catalyzing the production of the calcium-mobilizing metabolite, cyclic adenosine diphosphate ribose (cADPR), from nicotinamide adenine dinucleotide (NAD(+)). However, these enzymes also produce adenosine diphosphate ribose (ADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP(+)), both of which have been shown to modulate calcium mobilization in vitro. We have now characterized a new member of the cyclase family from Schistosoma mansoni, a member of the Platyhelminthes phylum. We show that the novel NAD(P)(+) catabolizing enzyme (NACE) expressed by schistosomes is structurally most closely related to the cyclases cloned from Aplysia but also shows significant homology with the mammalian cyclases, CD38 and CD157. NACE expression is developmentally regulated in schistosomes, and the GPI-anchored protein is localized to the outer tegument of the adult schistosome. Importantly, NACE, like all members of the cyclase family, is a multifunctional enzyme and catalyzes NAD(+) glycohydrolase and base-exchange reactions to produce ADPR and NAADP(+). However, despite being competent to generate a cyclic product from NGD(+), a nonphysiologic surrogate substrate, NACE is so far the only enzyme in the cyclase family that is unable to produce significant amounts of cADPR (<0.02% of reaction products) using NAD(+) as the substrate. This suggests that the other calcium-mobilizing metabolites produced by NACE may be more important for calcium signaling in schistosomes. Alternatively, the function of NACE may be to catabolize extracellular NAD(+) to prevent its use by host enzymes that utilize this source of NAD(+) to facilitate immune responses.  相似文献   

6.
The vinylogue of NAD, 3-pyridylacryloamide adenine dinucleotide, was prepared from NAD and 3-pyridylacryloamide through the snake venom NADase-catalyzed transglycosidation reaction. The analog, purified by ion-exchange chromatography, was obtained in a 55% yield. The cyanide adduct and reduced form of the analog exhibited absorbance maxima at 358 nm and 378 nm, respectively, with extinction coefficients in each case being 2.3-times higher than those reported for the corresponding NAD derivatives. 3-Pyridylacryloamide adenine dinucleotide served as a coenzyme with bovine liver glutamic dehydrogenase and to a lesser extent with malate and lactate dehydrogenases. The analog was not reduced in reactions catalyzed by yeast and horse liver alcohol dehydrogenases, sheep liver sorbitol dehydrogenase, and rabbit muscle glycerophosphate dehydrogenase. Substitution of the pyridylacryloamide analogs for NAD and NADH in the assay of substrates for glutamic dehydrogenase was demonstrated.  相似文献   

7.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a metabolite of NADP, which can release Ca2+ from stores that are distinct from those activated by either cyclic ADP-ribose or inositol 1,4,5-trisphosphate (IP3). It has previously been suggested that thio-NADP is a specific antagonist of NAADP (Chini et al. [1995]J. Biol. Chem. 270, 3216–3223). Its effects in sea-urchin egg homogenates were investigated. At 50 μM, thio-NADP activates partial Ca2+ release and totally inhibits subsequent challenge with a saturating concentration of NAADP. Purification by HPLC eliminates the Ca2+ releasing activity of 50 μM thio-NADP and reduces the subsequent inhibition by 73.7±1.3%. The residual inhibitory effect is no more than that exerted by 50 μM of either NADP itself or nicotinic acid adenine dinucleotide (NAAD). These results are confirmed by32P-NAADP binding studies. Unpurified thio-NADP inhibits the specific32P-NAADP binding to egg microsomes with an IC50 of 40 μM. After HPLC purification, only 20% inhibition is seen at a concentration as high as 50 μM, similar to the extent of inhibition effected by 40 μM NADP. These results indicate the inhibitory substance in thio-NADP is a contaminant. The partial Ca2+ release activity of unpurified thio-NADP suggests the contaminant is NAADP itself. This is supported by the fact that pretreatment with a subthreshold concentration of only 2 nM NAADP totally desensitizes the egg homogenates such that no Ca2+ response is seen with saturating NAADP. Estimation from the binding studies shows that a contamination of 0.012% of NAADP in the unpurified thio-NADP samples is sufficient to account for the inhibitory effects. These results indicate thio-NADP is not an antagonist of NAADP.  相似文献   

8.
Microinjection of human Jurkat T-lymphocytes with nicotinic acid adenine dinucleotide phosphate (NAADP(+)) dose-dependently stimulated intracellular Ca(2+)-signaling. At a concentration of 10 nM NAADP(+) evoked repetitive and long-lasting Ca(2+)-oscillations of low amplitude, whereas at 50 and 100 nM, a rapid and high initial Ca(2+)-peak followed by trains of smaller Ca(2+)-oscillations was observed. Higher concentrations of NAADP(+) (1 and 10 microM) gradually reduced the initial Ca(2+)-peak, and a complete self-inactivation of Ca(2+)-signals was seen at 100 microM. The effect of NAADP(+) was specific as it was not observed with nicotinamide adenine dinucleotide phosphate. Both inositol 1,4, 5-trisphosphate- and cyclic adenosine diphosphoribose-mediated Ca(2+)-signaling were efficiently inhibited by coinjection of a self-inactivating concentration of NAADP(+). Most importantly, microinjection of a self-inactivating concentration of NAADP(+) completely abolished subsequent stimulation of Ca(2+)-signaling via the T cell receptor/CD3 complex, indicating that a functional NAADP(+) Ca(2+)-release system is essential for T-lymphocyte Ca(2+)-signaling.  相似文献   

9.
H C Lee 《Biological chemistry》1999,380(7-8):785-793
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize Ca2+ from two different types of intracellular stores and through completely independent mechanisms. The two Ca2+ messengers are also structurally distinct. cADPR is a cyclic nucleotide derived from NAD, while NAADP is a linear metabolite of NADP. Systems responsive to these two novel signaling molecules are widespread among eukaryotes and include protozoan, plant, invertebrate, mammalian as well as human cells. Despite their functional and structural differences, cADPR and NAADP are sibling messengers synthesized by a single enzyme, ADP-ribosyl cyclase. In this article the recent progress in understanding the physiological roles of cADPR and NAADP is briefly reviewed. A unified mechanism of catalysis is also proposed, which takes into consideration the crystallographic structure of ADP-ribosyl cyclase and accounts for its novel multi-functionality.  相似文献   

10.
Cell-free extracts of Aspergillus niger UBC 814 grown in the presence of dl-mandelate oxidized both d(-)- and l(+)-mandelate via benzoylformate and benzaldehyde to benzoate. dl-p-Hydroxymandelate was oxidized, presumably through a parallel pathway, to p-hydroxybenzoate. A particulate d(-)-mandelate dehydrogenase and a supernatant fraction l(+)-mandelate dehydrogenase converted their respective substrates to benzoylformate. Both flavine adenine dinucleotide and flavine mononucleotide showed a stimulatory effect on the activity of the l(+)-mandelate dehydrogenase. Benzoylformate was decarboxylated to benzaldehyde by an enzyme requiring thiamine pyrophosphate for maximal activity. Two benzaldehyde dehydrogenases dependent on nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), respectively, for their activity dehydrogenated benzaldehyde to benzoate. In the presence of reduced NADP (NADPH), benzoate was oxidized via p-hydroxybenzoate and protocatechuate. Reduced NAD could not replace NADPH. Sensitive methods of assay for d(-)-mandelate dehydrogenase and benzoylformate decarboxylase are described. The fungal pathway is compared with these systems in bacteria.  相似文献   

11.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent activator of Ca2+ release from intracellular stores known today. Although recent reports have suggested an important function of NAADP in human T lymphocytes, direct evidence for receptor-induced formation of NAADP is yet missing in these cells. Thus, we developed a highly sensitive and specific enzyme assay capable of quantifying low fmol amounts of NAADP. In unstimulated T cells, the NAADP concentration amounted to 4.4 +/- 1.6 nm (0.055 +/- 0.028 pmol/mg of protein). Stimulation of the cells via the T cell receptor/CD3 complex resulted in biphasic elevation kinetics of cellular NAADP levels and was characterized by a bell-shaped concentration-response curve for NAADP. In contrast, the NAADP concentration was elevated neither upon activation of the ADP-ribose/TRPM2 channel Ca2+ signaling system nor by an increase of the intracellular Ca2+ concentration upon thapsigargin stimulation. T cell receptor/CD3 complex-mediated NAADP formation was dependent on the activity of tyrosine kinases because genistein completely blocked NAADP elevation. Thus, we propose a regulated formation of NAADP upon specific stimulation of the T cell receptor/CD3 complex, suggesting a function of NAADP as a Ca2+-mobilizing second messenger during T cell activation.  相似文献   

12.
NAADP (nicotinic acid-adenine dinucleotide phosphate) is a newly described intracellular messenger molecule that mediates Ca2+ increases in a variety of cells. However, little is known of the mechanism whereby ligand binding regulates the target protein. We report in the present paper that NAADP receptors from sea urchin eggs undergo an unusual stabilization process that appears to be dependent upon the time during which receptors are exposed to their ligand. We demonstrate that receptors 'tagged' with NAADP for short periods were more readily dissociated following subsequent delipidation than those labelled for longer. Stabilization of NAADP receptors by their ligand was delayed relative to ligand association taking on the order of minutes to develop at picomolar concentrations. The stabilizing effects of NAADP did not require cytosolic factors or the continued presence of NAADP and persisted upon solubilization. NAADP receptors, however, failed to stabilize at reduced temperature. We conclude that NAADP receptors possess a simple molecular memory endowing them with the remarkable ability to detect the duration of their activation.  相似文献   

13.
A high-pressure-liquid-chromatography (HPLC)-based technique was developed to assess the oxidized nicotinamide adenine dinucleotide (NAD(+))-glycohydrolase activity of the catalytic domain of Pseudomonas exotoxin A containing a hexa-His tag. The assay employs reverse-phase chromatography to separate the substrate (NAD(+)) and products (adenosine 5'-diphosphate-ribose and nicotinamide) produced over the reaction time course, whereby the peak area of nicotinamide is correlated using a standard curve. This technique was used to determine whether the NAD(+) analogue, 2'-F-ribo-NAD(+), was a competing substrate or a competitive inhibitor for this toxin. This NAD(+) analogue was hydrolyzed at a rate of 0.2% that of NAD(+) yet retained the same binding affinity for the toxin as the parent compound. Finally, the rate that a fluorescent NAD(+) analogue, epsilon-NAD(+), is hydrolyzed by the toxin was also investigated. This analogue was hydrolyzed six times slower than NAD(+) as determined using HPLC. The rate of hydrolysis of epsilon-NAD(+) calculated using the fluorometric version of the assay shows a sixfold increase in reaction rate compared to that determined by HPLC. This HPLC-based assay is adaptable to any affinity-tagged enzyme that possesses NAD(+)-glycohydrolase activity and offers the advantage of directly measuring the enzyme-catalyzed hydrolytic rate of NAD(+) and its analogues.  相似文献   

14.
Oxidized nicotinamide adenine dinucleotide (NAD(+)) kinase (NADK, E.C. 2.7.1.23) plays an instrumental role in cellular metabolism. Here we report on a blue native polyacrylamide gel electrophoretic technique that allows the facile detection of this enzyme. The product, oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)), formed following the reaction of NADK with NAD(+) and adenosine 5'-triphosphate was detected with the aid of glucose-6-phosphate dehydrogenase or NADP(+)-isocitrate dehydrogenase, iodonitrotetrazolium chloride, and phenazine methosulfate. The bands at the respective activity sites were excised and subjected to native and denaturing two-dimensional electrophoresis for the determination of protein levels. Hence this novel electrophoretic method allows the easy detection of NADK, a critical enzyme involved in pyridine homeostasis. Furthermore, this technique allowed the monitoring of the activity and expression of this kinase in various biological systems.  相似文献   

15.
The first total chemical synthesis of nicotinamide adenine dinucleotide phosphate (beta-NADP, 2) as a single isomer was achieved. This was subsequently converted into the important second messenger nicotinic acid adenine dinucleotide phosphate (p-NAADP) 1 and the identity of this material confirmed by biological evaluation. This flexible synthetic route offers new opportunities for the generation of NAADP 1 analogues that cannot be generated directly from NADP 2 or mainly enzymatic methods.  相似文献   

16.
While many investigations measuring oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) have been carried out on several mammalian tissues and blood cells, few reports have dealt with monolayers of cultured cells. Here we show a novel method to measure NAD+ and NADH in monolayers of a neuroblastoma cell line. The method was established by modifying a single extraction procedure originally developed for erythrocytes and an enzymatic cycling assay using a dye that absorbs in visible range. The following modifications were made. (i) Addition of 0.05% of a detergent, Triton X-100, to carbonate-bicarbonate extraction buffer enabled us to accurately measure cellular [NADH]/([NAD+]+[NADH]). (ii) Addition of N-ethyldibenzopyrazine ethyl sulfate salt (phenazine ethosulfate) immediately before the incubation suppressed the gradual decline of the sensitivity of the assay. The procedure presented here provides a simple and inexpensive measurement of NAD+ and NADH in cell monolayers.  相似文献   

17.
The first total chemical synthesis of nicotinamide adenine dinucleotide phosphate (β-NADP, 2) as a single isomer was achieved. This was subsequently converted into the important second messenger nicotinic acid adenine dinucleotide phosphate (β-NAADP) 1 and the identity of this material confirmed by biological evaluation. This flexible synthetic route offers new opportunities for the generation of NAADP 1 analogues that cannot be generated directly from NADP 2 or mainly enzymatic methods.  相似文献   

18.
Nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases (sirtuins) and other enzymes that produce nicotinamide are integral to many cellular processes. Yet current activity measurements involve expensive and time-consuming assays. Here we present a spectroscopic assay that circumvents many issues of previous methods. This assay permits continuous product monitoring over time, allows determination of steady-state kinetic parameters, and is readily adaptable to high-throughput screening. The methodology uses an enzyme-coupled system in which nicotinamide is converted to nicotinic acid and ammonia by nicotinamidase. The ammonia is transferred to α-ketoglutarate via glutamate dehydrogenase, yielding glutamate and the oxidation of NAD(P)H to NAD(P)+, which is measured spectrophotometrically at 340 nm. Using this continuous assay with sirtuin-1 (Sirt1) and the ADP-ribosyl cyclase CD38, the resulting steady-state kinetic parameters are in excellent agreement with values obtained by other published methods. Importantly, this assay permitted determination of kcat and Km values with the native acetylated substrate acetyl-CoA synthetase-1; measurement of Sirt1, Sirt2, and Sirt3 activities from mammalian cell extracts; and determination of IC50 values of various Sirt1 inhibitors. This assay is applicable to any nicotinamide-forming enzyme and will be an important tool to address many outstanding questions surrounding their regulation.  相似文献   

19.
The dual nucleotide cofactor-specific enzyme, 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) from Pseudomonas sp. B-0831, is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Transient-phase kinetic studies using the fluorescence stopped-flow method were conducted with 3alpha-HSD to characterize the nucleotide binding mechanism. The binding of oxidized nucleotides, NAD(+), NADP(+) and nicotinic acid adenine dinucleotide (NAAD(+)), agreed well with a one-step mechanism, while that of reduced nucleotide, NADH, showed a two-step mechanism. This difference draws attention to previous characteristic findings on rat liver 3alpha-HSD, which is a member of the aldo-keto reductase (AKR) superfamily. Although functionally similar, AKRs are structurally different from SDRs. The dissociation rate constants associated with the enzyme-nucleotide complex formation were larger than the k(cat) values for either oxidation or reduction of substrates, indicating that the release of cofactors is not rate-limiting overall. It should also be noted that k(cat) for a substrate, cholic acid, with NADP(+) was only 6% of that with NAD(+), and no catalytic activity was detectable with NAAD(+), despite the similar binding affinities of nucleotides. These results suggest that a certain type of nucleotide can modulate nucleotide-binding mode and further the catalytic function of the enzyme.  相似文献   

20.
Schmid F  Bruhn S  Weber K  Mittrücker HW  Guse AH 《FEBS letters》2011,585(22):3544-3548
The role of the multifunctional enzyme CD38 in formation of the Ca(2+)-mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) was investigated. Gene silencing of CD38 did neither inhibit NAADP synthesis in intact Jurkat T cells nor in thymus or spleen obtained from CD38 knock out mice. In vitro, both NAADP formation by base-exchange and degradation to 2-phospho adenosine diphosphoribose were efficiently decreased. Thus in vivo CD38 appears to be a NAADP degrading rather than a NAADP forming enzyme, perhaps avoiding desensitizing NAADP levels in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号