首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficacy of high-temperature, short-time (HTST) pasteurization (72 °C/15 s) when low numbers (≤ 103 cfu ml −1 ) of Mycobacterium paratuberculosis are present in milk was investigated. Raw cows' milk spiked with Myco. paratuberculosis (103 cfu ml−1, 102 cfu ml−1, 10 cfu ml−1, and 10 cfu 50 ml−1) was subjected to HTST pasteurization using laboratory pasteurizing units. Ten bovine strains of Myco. paratuberculosis were tested in triplicate. Culture in BACTEC Middlebrook 12B radiometric medium detected acid-fast survivors in 14·8% and 10% of HTST-pasteurized milk samples at the 103 and 102 cfu ml−1 inoculum levels, respectively, whereas conventional culture on Herrold's egg yolk medium containing mycobactin J detected acid-fast survivors in only 3·7% and 6·7% of the same milk samples. IS900-based PCR confirmed that these acid-fast survivors were Myco. paratuberculosis . No viable Myco. paratuberculosis were isolated from HTST-pasteurized milk initially containing either 10 cfu ml−1 or 10 cfu 50 ml−1.  相似文献   

2.
Raw cows' milk naturally infected with Mycobacterium paratuberculosis was pasteurized with an APV HXP commercial-scale pasteurizer (capacity 2,000 liters/h) on 12 separate occasions. On each processing occasion, milk was subjected to four different pasteurization treatments, viz., 73 degrees C for 15 s or 25 s with and without prior homogenization (2,500 lb/in(2) in two stages), in an APV Manton Gaulin KF6 homogenizer. Raw and pasteurized milk samples were tested for M. paratuberculosis by immunomagnetic separation (IMS)-PCR (to detect the presence of bacteria) and culture after decontamination with 0.75% (wt/vol) cetylpyridinium chloride for 5 h (to confirm bacterial viability). On 10 of the 12 processing occasions, M. paratuberculosis was detectable by IMS-PCR, culture, or both in either raw or pasteurized milk. Overall, viable M. paratuberculosis was cultured from 4 (6.7%) of 60 raw and 10 (6.9%) of 144 pasteurized milk samples. On one processing day, in particular, M. paratuberculosis appeared to have been present in greater abundance in the source raw milk (evidenced by more culture positives and stronger PCR signals), and on this occasion, surviving M. paratuberculosis bacteria were isolated from milk processed by all four heat treatments, i.e., 73 degrees C for 15 and 25 s with and without prior homogenization. On one other occasion, surviving M. paratuberculosis bacteria were isolated from an unhomogenized milk sample that had been heat treated at 73 degrees C for 25 s. Results suggested that homogenization increases the lethality of subsequent heat treatment to some extent with respect to M. paratuberculosis, but the extended 25-s holding time at 73 degrees C was found to be no more effective at killing M. paratuberculosis than the standard 15-s holding time. This study provides clear evidence that M. paratuberculosis bacteria in naturally infected milk are capable of surviving commercial high-temperature, short-time pasteurization if they are present in raw milk in sufficient numbers.  相似文献   

3.
AIMS: To assess the impact of chemical decontamination and refrigerated storage before culture on the recovery of Mycobacterium avium subsp. paratuberculosis from heat-treated milk. METHODS AND RESULTS: Five-millilitre samples of ultra heat-treated (UHT) milk spiked with Myco. paratuberculosis NCTC 8578, B4 or 806R (ca 10(6) CFU ml(-1)) were heated at 63 degrees C for 20 or 30 min by submersion in a water bath. Heat-treated milk (0.5 ml) was cultured immediately into BACTEC 12B medium or refrigerated at 4 degrees C for 48 h before culture. Milk samples that received a 20-min heat treatment were also subjected to decontamination with 0.75% cetylpyridinium chloride (CPC) for 5 h at room temperature before inoculation into BACTEC 12B medium when tested immediately and after 48 h at 4 degrees C. BACTEC vials were monitored for evidence of growth over an 18-week incubation period at 37 degrees C. CPC decontamination resulted in a significant reduction in the number of culture-positive milk samples recovered immediately after heating (P < 0.05) and after refrigerated storage for 48 h (P < 0.01). Refrigerated storage for 48 h before testing did not have any significant effect, beneficial or detrimental, on Myco. paratuberculosis recovery rates. CONCLUSIONS: CPC decontamination applied to milk immediately or 48 h after heating will adversely affect the recovery of viable Myco. paratuberculosis, possibly leading to nonrecovery of the organism although viable cells are present in the original milk sample. SIGNIFICANCE AND IMPACT OF THE STUDY: Published pasteurization studies in which milk samples were decontaminated before culture will have underestimated the survival capability of Myco. paratuberculosis after high-temperature, short-time pasteurization. CPC decontamination should not be applied to pasteurized milk in future studies.  相似文献   

4.
The effectiveness of high-temperature, short holding time (HTST) pasteurization and homogenization with respect to inactivation of Mycobacterium avium subsp. paratuberculosis was evaluated quantitatively. This allowed a detailed determination of inactivation kinetics. High concentrations of feces from cows with clinical symptoms of Johne's disease were used to contaminate raw milk in order to realistically mimic possible incidents most closely. Final M. avium subsp. paratuberculosis concentrations varying from 10(2) to 3.5 x 10(5) cells per ml raw milk were used. Heat treatments including industrial HTST were simulated on a pilot scale with 22 different time-temperature combinations, including 60 to 90 degrees C at holding (mean residence) times of 6 to 15 s. Following 72 degrees C and a holding time of 6 s, 70 degrees C for 10 and 15 s, or under more stringent conditions, no viable M. avium subsp. paratuberculosis cells were recovered, resulting in >4.2- to >7.1-fold reductions, depending on the original inoculum concentrations. Inactivation kinetic modeling of 69 quantitative data points yielded an E(a) of 305,635 J/mol and an lnk(0) of 107.2, corresponding to a D value of 1.2 s at 72 degrees C and a Z value of 7.7 degrees C. Homogenization did not significantly affect the inactivation. The conclusion can be drawn that HTST pasteurization conditions equal to 15 s at > or =72 degrees C result in a more-than-sevenfold reduction of M. avium subsp. paratuberculosis.  相似文献   

5.
A pilot-scale pasteurizer operating under validated turbulent flow (Reynolds number, 11,050) was used to study the heat sensitivity of Mycobacterium avium subsp. paratuberculosis added to raw milk. The ATCC 19698 type strain, ATCC 43015 (Linda, human isolate), and three bovine isolates were heated in raw whole milk for 15 s at 63, 66, 69, and 72 degrees C in duplicate trials. No strains survived at 72 degrees C for 15 s; and only one strain survived at 69 degrees C. Means of pooled D values (decimal reduction times) at 63 and 66 degrees C were 15.0 +/- 2.8 s (95% confidence interval) and 5.9 +/- 0.7 s (95% confidence interval), respectively. The mean extrapolated D72 degrees C was <2.03 s. This was equivalent to a >7 log10 kill at 72 degrees C for 15 s (95% confidence interval). The mean Z value (degrees required for the decimal reduction time to traverse one log cycle) was 8.6 degrees C. These five strains showed similar survival whether recovery was on Herrold's egg yolk medium containing mycobactin or by a radiometric culture method (BACTEC). Milk was inoculated with fresh fecal material from a high-level fecal shedder with clinical Johne's disease. After heating at 72 degrees C for 15 s, the minimum M. avium subsp. paratuberculosis kill was >4 log10. Properly maintained and operated equipment should ensure the absence of viable M. avium subsp. paratuberculosis in retail milk and other pasteurized dairy products. An additional safeguard is the widespread commercial practice of pasteurizing 1.5 to 2 degrees above 72 degrees C.  相似文献   

6.
The effectiveness of pasteurization and the concentration of Mycobacterium avium subsp. paratuberculosis in raw milk have been identified in quantitative risk analysis as the most critical factors influencing the potential presence of viable Mycobacterium paratuberculosis in dairy products. A quantitative assessment of the lethality of pasteurization was undertaken using an industrial pasteurizer designed for research purposes with a validated Reynolds number of 62,112 and flow rates of 3,000 liters/h. M. paratuberculosis was artificially added to raw whole milk, which was then homogenized, pasteurized, and cultured, using a sensitive technique capable of detecting one organism per 10 ml of milk. Twenty batches of milk containing 10(3) to 10(4) organisms/ml were processed with combinations of three temperatures of 72, 75, and 78 degrees C and three time intervals of 15, 20, and 25 s. Thirty 50-ml milk samples from each processed batch were cultured, and the logarithmic reduction in M. paratuberculosis organisms was determined. In 17 of the 20 runs, no viable M. paratuberculosis organisms were detected, which represented > 6-log10 reductions during pasteurization. These experiments were conducted with very heavily artificially contaminated milk to facilitate the measurement of the logarithmic reduction. In three of the 20 runs of milk, pasteurized at 72 degrees C for 15 s, 75 degrees C for 25 s, and 78 degrees C for 15 s, a few viable organisms (0.002 to 0.004 CFU/ml) were detected. Pasteurization at all temperatures and holding times was found to be very effective in killing M. paratuberculosis, resulting in a reduction of > 6 log10 in 85% of runs and > 4 log10 in 14% of runs.  相似文献   

7.
The thermal inactivation of 11 strains of Mycobacterium paratuberculosis at pasteurization temperatures was investigated. Cows' milk inoculated with M. paratuberculosis at two levels (10(7) and 10(4) CFU/ml) was pasteurized in the laboratory by (i) a standard holder method (63.5 degrees C for 30 min) and (ii) a high-temperature, short-time (HTST) method (71.7 degrees C for 15 s). Additional heating times of 5, 10, 15, 20, and 40 min at 63.5 degrees C were included to enable the construction of a thermal death curve for the organism. Viability after pasteurization was assessed by culture on Herrold's egg yolk medium containing mycobactin J (HEYM) and in BACTEC Middlebrook 12B radiometric medium supplemented with mycobactin J and sterile egg yolk emulsion. Confirmation of acid-fast survivors of pasteurization as viable M. paratuberculosis cells was achieved by subculture on HEYM to indicate viability coupled with PCR using M. paratuberculosis-specific 1S900 primers. When milk was initially inoculated with 10(6) to 10(7) CFU of M. paratuberculosis per ml, M. paratuberculosis cells were isolated from 27 of 28 (96%) and 29 of 34 (85%) pasteurized milk samples heat treated by the holder and HTST methods, respectively. Correspondingly, when 10(3) to 10(4) CFU of M. paratuberculosis per ml of milk were present before heat treatment, M. paratuberculosis cells were isolated from 14 of 28 (50%) and 19 of 33 (58%) pasteurized milk samples heat treated by the holder and HTST methods, respectively. The thermal death curve for M. paratuberculosis was concave in shape, exhibiting a rapid initial death rate followed by significant "tailing." Results indicate that when large numbers of M. paratuberculosis cells are present in milk, the organism may not be completely inactivated by heat treatments simulating holder and HTST pasteurization under laboratory conditions.  相似文献   

8.
Over a 17-month period (March 1999 to July 2000), a total of 814 cows' milk samples, 244 bulk raw and 567 commercially pasteurized (228 whole, 179 semi-skim, and 160 skim), from 241 approved dairy processing establishments throughout the United Kingdom were tested for the presence of Mycobacterium paratuberculosis by immunomagnetic PCR (to detect all cells living and dead) and culture (to detect viable cells). Overall, M. paratuberculosis DNA was detected by immunomagnetic PCR in 19 (7.8%; 95% confidence interval, 4.3 to 10.8%) and 67 (11.8%; 95% confidence interval, 9.0 to 14.2%) of the raw and pasteurized milk samples, respectively. Confirmed M. paratuberculosis isolates were cultured from 4 (1.6%; 95% confidence interval, 0.04 to 3.1%) and 10 (1.8%; 95% confidence interval, 0.7 to 2.8%) of the raw and pasteurized milk samples, respectively, following chemical decontamination with 0.75% (wt/vol) cetylpyridinium chloride for 5 h. The 10 culture-positive pasteurized milk samples were from just 8 (3.3%) of the 241 dairy processing establishments that participated in the survey. Seven of the culture-positive pasteurized milk samples had been heat treated at 72 to 74 degrees C for 15 s; the remainder had been treated at 72 to 75 degrees C for the extended holding time of 25 s. When typed by restriction fragment length polymorphism and pulsed-field gel electrophoresis methods, some of the milk isolates were shown to be types distinct from those of laboratory strains in regular use within the testing laboratory. From information gathered at the time of milk sample collection, all indications were that pasteurization had been carried out effectively at all of the culture-positive dairies. That is, pasteurization time and temperature conditions complied with the legal minimum high-temperature, short-time process; all pasteurized milk samples tested phosphatase negative; and post-process contamination was considered unlikely to have occurred. It was concluded that viable M. paratuberculosis is occasionally present at low levels in commercially pasteurized cows' milk in the United Kingdom.  相似文献   

9.
In cooked-chilled and pasteurized vegetable products, initial numbers of Bacillus cereus were below 10 cfu g-1. Before the appearance of spoilage, numbers reached 6-8 log cfu g-1 at 20 degrees C and 4-6 log cfu g-1 at 10 degrees C. Bacillus cereus was not detected in samples stored at 4 degrees C. Ten percent of strains isolated from the products were able to grow at 5 degrees C and 63% at 10 degrees C. Bacillus cereus strains unable to degrade starch, a feature linked to the production of emetic toxin, did not grow at 10 degrees C and had a higher heat resistance at 90 degrees C. Using immunochemical assays, enterotoxin was detected in the culture supernatant fluid of 97.5% of the strains. All culture supernatant fluids were cytotoxic but important variations in the level of activity were found. Psychrotrophic isolates of B. cereus were unable to grow in courgette broth at 7 degrees C whereas they grew in a rich laboratory medium. At 10 degrees C, these isolates grew in both media but lag time in courgette broth was 20-fold longer than in the rich laboratory medium.  相似文献   

10.
The influence of treatment temperature and pulsed electric fields (PEF) on the viability of Mycobacterium paratuberculosis cells suspended in 0.1% (wt/vol) peptone water and in sterilized cow's milk was assessed by direct viable counts and by transmission electron microscopy (TEM). PEF treatment at 50 degrees C (2,500 pulses at 30 kV/cm) reduced the level of viable M. paratuberculosis cells by approximately 5.3 and 5.9 log(10) CFU/ml in 0.1% peptone water and in cow's milk, respectively, while PEF treatment of M. paratuberculosis at lower temperatures resulted in less lethality. Heating alone at 50 degrees C for 25 min or at 72 degrees C for 25 s (extended high-temperature, short-time pasteurization) resulted in reductions of M. paratuberculosis of approximately 0.01 and 2.4 log(10) CFU/ml, respectively. TEM studies revealed that exposure to PEF treatment resulted in substantial damage at the cellular level to M. paratuberculosis.  相似文献   

11.
Escherichia coli O157:H7 and verocytotoxins were not found in any of 100 unpasteurized milk samples obtained from the bulk tanks of eight dairy farms located in the Puglia and Basilicata areas. Seven E. coli O157:H7 (EHEC) strains were inoculated separately into raw milk samples and then examined periodically to determine the fate of EHEC as influenced by the storage temperature (8 degrees C) and time. There was essentially no change in the viable population of three EHEC strains for up to 14 d. The remaining four strains showed an increase in population from < 2 log to 3 log cfu ml-1 in a time period of between 9 and 17 d. The results indicate good survival or even multiplication of E. coli O157:H7 in raw milk when stored at 8 degrees C and reaffirm the need for pasteurization and holding the milk at < or = 5 degrees C.  相似文献   

12.
AIMS: To compare the detection capabilities of the non-radiometric MGIT (Mycobacteria Growth Indicator Tubes) and radiometric BACTEC 460TB culture systems (Becton Dickinson, Cowley, Oxford, UK) for recovering Mycobacterium avium subsp. paratuberculosis from milk. METHODS AND RESULTS: Ultra heat treated (UHT) milk samples spiked with different levels of M. paratuberculosis (10-107 cells ml-1) were inoculated into MGIT and BACTEC media (containing recommended supplements) with and without prior chemical decontamination of the milk samples with 0.75% (w/v) cetylpyridinium chloride for 5 h. Time for the detection of growth in days was recorded for each culture system, and a M. paratuberculosis count for each milk sample was calculated from BACTEC readings using a published formula. Correlation between MGIT and BACTEC detection times was 0.6983. Both culture systems were capable of detecting 10-100 M. paratuberculosis cells ml-1 in milk within 30-40 days when no decontamination treatment was applied, but only 102-103 cells ml-1 or greater when chemical decontamination was applied before culture. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF STUDY: The non-radiometric MGIT system could be substituted for the radiometric BACTEC system for the culture of M. paratuberculosis from milk without loss of detection sensitivity. Chemical decontamination before culture caused a significant reduction in numbers of viable M. paratuberculosis in all spiked milk samples resulting in decreased detection capability for both culture systems.  相似文献   

13.
AIMS: To determine the effect of high pressures alone and in conjunction with pasteurization on the viability of two strains of Mycobacterium avium ssp. paratuberculosis (Map). METHODS AND RESULTS: Map in a milk matrix was subjected to 400, 500 and 600 MPa with and without pasteurization (72 degrees C for 15 s) and plated onto Herrold's egg yolk medium (HEYM) and Middlebrook 7H10 (7H10) agar, both containing antibiotic supplements. Medium 7H10 was found to give a significantly (P < 0.001) better recovery than HEYM. A significantly greater (P < 0.001) reduction in viable numbers was observed using 500 MPa (mean log reduction of 6.52) compared with 400 MPa (mean log reduction of 2.56) and between 400 MPa and control (no applied pressure) for 10 min treatments. A treatment time of 10 min resulted in significantly (P < 0.001) fewer survivors than 5 min. Low numbers of survivors were still detected when pressure treatment at 400 and 600 MPa was combined with subsequent pasteurization. CONCLUSIONS: The use of high-pressure was effective in reducing viable numbers of Map but even when combined with pasteurization there were still survivors, albeit when high inoculum levels of Map were used. SIGNIFICANCE AND IMPACT OF THE STUDY: To the authors' knowledge the work reported here represents the first study of the efficacy of high-pressure treatments alone and in combination with pasteurization to kill Map. The results indicate that further research is warranted before more commercial-scale studies are commissioned.  相似文献   

14.
The effects of nisin and monolaurin, alone and in combination, were investigated on Bacillus licheniformis spores in milk at 37 degrees C. In the absence of inhibitors, germinated spores developed into growing vegetative cells and started sporulation at the end of the exponential phase. In the presence of nisin (25 IU ml-1), spore outgrowth was inhibited (4 log10 reduction at 10 h). Regrowth appeared between 10 and 24 h and reached a high population level (1.25 x 10(8) cfu ml-1) after 7 d. Monolaurin (250 micrograms ml-1) had a bacteriostatic effect during the first 10 h but thereafter, regrowth occurred slowly with a population level after 7 d (4 x 10(5) cfu ml-1) lower than that of nisin. Different combined effects of nisin (between 0 and 42 IU ml-1), monolaurin (ranging from 0 to 300 micrograms ml-1), pH values (between 5.0 and 7.0) and spore loads (10(3), 10(4), 10(5) spores ml-1) were investigated using a Doehlert matrix in order to study the main effects of these factors and the different interactions. Results were analysed using the Response Surface Methodology (RSM) and indicated that nisin and monolaurin had no action on spores before germination; only pH values had a significant effect (P < or = 0.001), i.e. spore count decreased as the pH value increased in relation to germination. Sublethal concentrations of nisin (30 IU ml-1) and monolaurin (100 micrograms ml-1) in combination acted synergistically on outgrown spores and vegetative cells, showing total inhibition at pH 6.0, without regrowth, within 7 d at 37 degrees C.  相似文献   

15.
Raw cows' milk naturally infected with Mycobacterium paratuberculosis was pasteurized with an APV HXP commercial-scale pasteurizer (capacity 2,000 liters/h) on 12 separate occasions. On each processing occasion, milk was subjected to four different pasteurization treatments, viz., 73°C for 15 s or 25 s with and without prior homogenization (2,500 lb/in2 in two stages), in an APV Manton Gaulin KF6 homogenizer. Raw and pasteurized milk samples were tested for M. paratuberculosis by immunomagnetic separation (IMS)-PCR (to detect the presence of bacteria) and culture after decontamination with 0.75% (wt/vol) cetylpyridinium chloride for 5 h (to confirm bacterial viability). On 10 of the 12 processing occasions, M. paratuberculosis was detectable by IMS-PCR, culture, or both in either raw or pasteurized milk. Overall, viable M. paratuberculosis was cultured from 4 (6.7%) of 60 raw and 10 (6.9%) of 144 pasteurized milk samples. On one processing day, in particular, M. paratuberculosis appeared to have been present in greater abundance in the source raw milk (evidenced by more culture positives and stronger PCR signals), and on this occasion, surviving M. paratuberculosis bacteria were isolated from milk processed by all four heat treatments, i.e., 73°C for 15 and 25 s with and without prior homogenization. On one other occasion, surviving M. paratuberculosis bacteria were isolated from an unhomogenized milk sample that had been heat treated at 73°C for 25 s. Results suggested that homogenization increases the lethality of subsequent heat treatment to some extent with respect to M. paratuberculosis, but the extended 25-s holding time at 73°C was found to be no more effective at killing M. paratuberculosis than the standard 15-s holding time. This study provides clear evidence that M. paratuberculosis bacteria in naturally infected milk are capable of surviving commercial high-temperature, short-time pasteurization if they are present in raw milk in sufficient numbers.  相似文献   

16.
Currently, it is not known whether commercial pasteurization effectively kills Mycobacterium paratuberculosis in contaminated raw milk. Results from holder test tube experiments indicated that a residual population of viable bacteria remained after treatment at 65, 72, 74, or 76 degrees C for 0 to 30 min. Use of a laboratory-scale pasteurizer unit demonstrated that treatment of raw milk at 72 degrees C for 15 s effectively killed all M. paratuberculosis.  相似文献   

17.
The viability of bifidobacteria in mul-kimchi, a type of kimchi with added water, was investigated under various conditions. When a mul-kimchi preparation was inoculated with five strains of Bifidobacterium at a concentration of 10(7) cfu ml-1, Bif. longum JK-2 showed the highest viability, maintaining a population of 10(6) cfu ml-1 after 1 week at 4 degrees C. The influence of NaCl concentration and initial pH on viability was further investigated in mul-kimchi inoculated with Bif. longum JK-2; NaCl concentrations greater than 3% (w/w) reduced viability considerably. In kimchi started with an initial pH of 6.5, the cells showed the highest survival. When mul-kimchi containing 2% NaCl (w/w) was inoculated with 10(8) cfu ml-1 Bif. longum JK-2, there was a 10-fold reduction in viability during 10 d of incubation at 4 degrees C. These results demonstrate acceptable levels of the organism in the product, suggesting the possible use of selected strains of bifidobacteria in commercial kimchi production.  相似文献   

18.
Over the 13-month period from October 2000 to November 2001 (inclusive), the Food Safety Authority of Ireland (FSAI) carried out surveillance of Irish bulk raw (n = 389) and commercially pasteurized (n = 357) liquid-milk supplies to determine the incidence of Mycobacterium paratuberculosis. The pasteurization time-temperature conditions were recorded for all pasteurized samples. Overall, 56% of whole-milk pasteurized samples had been heat treated at or above a time-temperature combination of 75 degrees C for 25 s. All analyses were undertaken at the Department of Food Science (Food Microbiology) laboratory at Queen's University Belfast. Each milk sample was subjected to two tests for M. paratuberculosis: immunomagnetic separation-PCR (IMS-PCR; to detect the presence of M. paratuberculosis cells, live or dead) and chemical decontamination and culture (to confirm the presence of viable M. paratuberculosis). Overall, M. paratuberculosis DNA was detected by IMS-PCR in 50 (12.9%; 95% confidence interval, 9.9 to 16.5%) raw-milk samples and 35 (9.8%; 95% confidence interval, 7.1 to 13.3%) pasteurized-milk samples. Confirmed M. paratuberculosis was cultured from one raw-milk sample and no pasteurized-milk samples. It is concluded that M. paratuberculosis DNA is occasionally present at low levels in both raw and commercially pasteurized cows' milk. However, since no viable M. paratuberculosis was isolated from commercially pasteurized cows' milk on retail sale in the Republic of Ireland, current pasteurization procedures are considered to be effective.  相似文献   

19.
AIM: To determine the sensitivity of methods for detection of injured and uninjured Escherichia coli O157:H7 (E. coli O157) in raw and pasteurized milk. METHODS AND RESULTS: Raw milk, pasteurized milk with 1.5% fat content and pasteurized milk with 3.5% fat content were spiked with E. coli O157 at low levels. The samples were enriched in modified tryptone soya broth with novobiocin (mTSBn) at 37 degrees C. Aliquots of the enriched culture were analysed either by manual immunomagnetic separation (MIMS) and culturing on sorbitol MacConkey agar with or without cefixime and potassium tellurite (SMACct or SMAC), or by automated immunomagnetic separation and integrated ELISA (EiaFosstrade mark). Uninjured E. coli O157 organisms were detected in milk by both methods at 1 cfu 10 ml-1 sample). Injured organisms were detected at levels of about 4 cfu 10 ml-1 sample. Direct enrichment in mTSBn (22 h incubation) showed better sensitivity for injured cells than enrichment in buffered peptone water (BPW, 22 h incubation), or in a two-step enrichment consisting of BPW (6 h, 37 degrees C) and mTSBn (16 h, 37 degrees C), successively. CONCLUSIONS: The methods showed equal sensitivity in that they were both able to detect 1 cfu 10 ml-1 milk sample. Injured organisms can be detected and isolated at a level almost as low as this. A resuscitation step is not recommended for the detection and isolation of injured and non-injured E. coli O157 from milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Due to the dilution of contamination in the bulk tank, analysis of milk for the presence of E. coli O157 requires a very sensitive method. Both methods described here are useful for such analysis.  相似文献   

20.
The possibility that long term in vitro chilled storage may result in sub-lethal damage to Listeria monocytogenes cells was investigated by comparing growth of chill-stored (starvation at 4 degrees C) and fresh cultures on selective and non-selective media. Growth of freshly grown cells was minimally (3-8%) affected by selective LSAMM agar compared with non-selective Brain Heart Infusion agar. In contrast, numbers of chill-stored strains were reduced by greater than 99% after direct plating on the same selective and non-selective media. Furthermore, chill-stored strains were able to grow in standard selective broth (Listeria Selective broth and Fraser broth) only if undiluted inocula (approximately 10(5)-10(6) cfu ml-1) were used, whereas they were capable of growth in Brain Heart Infusion broth even when the lowest dilutions were used (approximately 10(1) cfu ml-1). The potential public health consequences of this finding for the isolation of Listeria monocytogenes from foods is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号