首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of superoxide anion on the intracellular free calcium concentration ([Ca2+]i) in human cultured myometrial cells using a calcium-sensitive fluorescent dye, indo-1, and a digital imaging fluorescence microscopic system. Hypoxanthine (HX) plus xanthine oxidase induced a rise in [Ca2+]i in a manner dose-dependent on xanthine oxidase. The increase in [Ca2+]i in the absence of extracellular calcium ([Ca2+]ex) was 10% of that in the presence of [Ca2+]ex. Nifedipine, which blocks voltage-sensitive calcium channels, also reduced the increase in [Ca2+]i induced by HX-xanthine oxidase. Superoxide dismutase or superoxide dismutase plus catalase, which metabolizes superoxide anion, inhibited the effect of HX-xanthine oxidase on [Ca2+]i. The desensitization of the effect of superoxide anion on [Ca2+]i was investigated by pulsatile administration of HX and xanthine oxidase. Desensitization was observed on pulsatile administration of HX-xanthine oxidase at 2-min intervals. These data suggest that superoxide production may participate in uterine contraction via [Ca2+]i increase.  相似文献   

2.
Hyperthermia (heat shock (HS)) induces changes in morphology of nucleoli, cytoplasmic organelles, and cytoskeleton. Responses to hyperthermia are, as a rule, similar in all types of eukaryote cells. However, there is no information on the uniformity of the cytoskeleton heat shock response (CHSR) in different cell types. This has led to the conclusion that the eukaryote CHSR depends on the cell type. We studied CHSR only in one cell type-in normal embryonic mouse fibroblasts (NEMFs) and in normal embryonic rat fibroblasts (NERFs), as well as in normal postnatal rat fibroblasts (NPRFs), by using the method of fluorescence microscopy. Incubation of the cells at 43°C led to a rearrangement of cytoskeleton. Responses of cytoskeleton to HS in NEMF, NERF, and NPRF were similar. Heat shock resulted in disassembly of bundles of actin filaments (AFs), marked changes in microtubule (MT) morphology, and collapse of intermediate filaments (IFs) around the nucleus. Rearrangements of different cytoskeleton filament types occurred simultaneously and were seen as soon as after 2–4 min. After 30–120 min of incubation at 43°C, the cells were still capable of rebuilding the actin cytoskeleton after the temperature had returned to normal (37°C). We believe that the cytoskeleton rearrangement under the action of HS can be of vital importance in cell protection against temperature stress. Data are discussed on possible coupling of the CHSR process with rearrangement of the protein synthesizing system, which leads to initiation and/or stimulation of synthesis of HS proteins.  相似文献   

3.
We determined the effects of superoxide anion, produced by addition of xanthine oxidase to hypoxanthine, on the intracellular pH (pHi) and intracellular free calcium concentration ([Ca2+]i) and release of arachidonate in human cultured amnion cells. Superoxide anion induced a prompt increase of pHi and subsequent increase of [Ca2+]i. The evoked pHi was inhibited by pretreatment with anion channel blockers but not affected by omission of extracellular Na+ or addition of amiloride. The increase of [Ca2+]i was inhibited significantly by the absence of extracellular calcium or by the addition of a calcium channel blocker, cobalt. NH4Cl, which can generally increase pHi, also increased [Ca2+]i of amnion cells. But the increase of [Ca2+]i induced by the NH4Cl was significantly less than that induced by the amount of superoxide anion causing a similar increase in pHi. These results show that superoxide anion, crossed through anion channel in membrane, increased [Ca2+]i at least partially via increase of pHi and that the calcium mobilization was dependent on both extracellular and intracellular sources. Superoxide anion induced the release of arachidonate in a dose-dependent manner and this induction was inhibited by omission of extracellular calcium. These data suggest that the release of arachidonate was dependent on the increase of [Ca2+]i. We also determined the viability of cells in the presence of superoxide anion by flow cytometry. Superoxide anion at the levels used in these experiments did not change the percentage of viable cells. These findings suggested that superoxide anion may regulate biological functions in amnion cells via pHi, [Ca2+]i mobilization, and the release of arachidonate without damaging the cells.  相似文献   

4.
The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce similar cytoskeletal alterations, no thermic denaturation of one or more cytoskeletal components can be involved in this process. Heat shock proteins are induced both by heat and by arsenite. However, cells treated with arsenite synthesize hsp28 which is not detected in heat-treated cells. Synthesis of all hsps is prevented by addition of actinomycin D or cycloheximide. Under these conditions no alterations are observed in the organization of microtubules and intermediate filaments during heat or arsenite treatment. However, these drugs are not able to prevent the rapid loss of stress fibers. A re-formation of the cytoskeleton during the recovery period proceeds within 3 h and is also found to occur in the presence of a protein synthesis inhibitor. These data suggest that reorganization of microtubules and intermediate filaments during a stress treatment requires the synthesis of a new protein(s), probably hsp(s).  相似文献   

5.
A high concentration of extracellular calcium (8 mM) induced an increase in free cytoplasmic calcium, a lower cyclic AMP level and increased DNA synthesis in primary cultures of human osteoblast-like cells. Inhibition of protein kinase C with bisindolylmaleimide I inhibited the stimulatory effect of extracellular calcium on DNA synthesis in human osteoblast-like cells, whereas inhibition of protein kinase A with Rp-cAMPs had no effect on DNA synthesis. This indicates that protein kinase C, possibly via increased free cytoplasmic calcium, mediates the effect of extracellular calcium on DNA synthesis in osteoblast-like cells rather than a relative decrease in cyclic AMP and protein kinase A activity. Furthermore, a low concentration (0.5 mM) of extracellular calcium decreased DNA synthesis. In conclusion, these data suggest that a high extracellular calcium level may be a coupling factor that recruits osteoblasts in the bone remodeling process, and that a low level of extracellular calcium may also regulate osteoblast function.  相似文献   

6.
Endothelium of the cerebral blood vessels, which constitutes the blood-brain barrier, controls adhesion and trafficking of leukocytes into the brain. Investigating signaling pathways triggered by the engagement of adhesion molecules expressed on brain endothelial cells using two rat brain endothelial cell lines (RBE4 and GP8), we report in this paper that ICAM-1 cross-linking induces a sustained tyrosine phosphorylation of the phosphatidylinositol-phospholipase C (PLC)gamma1, with a concomitant increase in both inositol phosphate production and intracellular calcium concentration. Our results suggest that PLC are responsible, via a calcium- and protein kinase C (PKC)-dependent pathway, for p60Src activation and tyrosine phosphorylation of the p60Src substrate, cortactin. PKCs are also required for tyrosine phosphorylation of the cytoskeleton-associated proteins, focal adhesion kinase and paxillin, but not for ICAM-1-coupled p130Cas phosphorylation. PKC's activation is also necessary for stress fiber formation induced by ICAM-1 cross-linking. Finally, cell pretreatment with intracellular calcium chelator or PKC inhibitors significantly diminishes transmonolayer migration of activated T lymphocytes, without affecting their adhesion to brain endothelial cells. In summary, our data demonstrate that ICAM-1 cross-linking induces calcium signaling which, via PKCs, mediates phosphorylation of actin-associated proteins and cytoskeletal rearrangement in brain endothelial cell lines. Our results also indicate that these calcium-mediated intracellular events are essential for lymphocyte migration through the blood-brain barrier.  相似文献   

7.
8.
Staphylococcal serine proteinase (SSP) can influence various functions of human polymorphonuclear leukocytes (PMNL) including chemotaxis and phagocytosis. Since the rise in intracellular free calcium concentration is an important step in signal transduction leading to phagocyte activation, we tested the ability of SSP to increase the intracellular free calcium concentration in human PMNL using the fluorescent calcium indicator Fura-2AM. PMNL isolated from healthy donors responded to SSP in the concentration range of 10 to 100 µg/ml. The highest Ca2+ rise (104 ± 47 nM) was observed for 10 µg/ml SSP. It was mainly dependent (81 ± 11%) on extracellular calcium influx, however, SSP mobilized 68 ± 7% of Ca2+ from intracellular calcium stores. Boiling of SSP or preincubation with phenylmethylsulphonylfluoride (an serine proteinase inhibitor) did not change its ability to increase intracellular free calcium concentration in PMNL. It suggests that active center of SSP is not responsible for Ca2+ mobilization. Finally, PMNL responded to each of three consecutive stimulations with SSP independently of the presence of high or low extracellular Ca2 concentration. This may be an additional mechanism responsible for activation of human PMNL and degradation of alveolar walls during the staphylococcal infection in the lower airways.  相似文献   

9.
E Kraus  R Niederman 《Cytometry》1990,11(2):272-282
Forward-angle light scatter (FALS) and right-angle light scatter (RALS) are commonly employed to discriminate between leukocyte subclasses. Recently the application of RALS has expanded, and it is now also used as an indicator of neutrophil actin polymerization. In this communication we critically examine the relationship of RALS to changes in cytoskeletal actin. The data indicate that agonists which stimulate an increase, a decrease, or no change in F-actin content can all stimulate a biphasic change in RALS. We therefore conclude that changes in RALS can occur independently of changes in F-actin content. This leads us to suggest that caution must be taken when interpreting RALS data in relation to changes in F-actin. Furthermore, the data also support the idea originally proposed by Yuli and Snyderman (J Clin Invest 73:1408-1417, 1984), that RALS may be an exceptionally sensitive indicator of cell activation.  相似文献   

10.
11.
Heat shock protein synthesis and thermotolerance in Salmonella typhimurium   总被引:2,自引:0,他引:2  
The resistance of stationary phase Salmonella typhimurium to heating at 55 degrees C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48 degrees C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any. The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48 degrees C to 37 degrees C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

12.
The resistance of stationary phase Salmonella typhimurium to heating at 55°C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48°C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any.
The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48°C to 37°C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

13.
Heat shock protein synthesis and thermal tolerance in wheat   总被引:7,自引:3,他引:4       下载免费PDF全文
Plants respond to high temperature stress by the synthesis of an assortment of heat shock proteins that have been correlated with an acquired thermal tolerance to otherwise lethal temperatures. This study was conducted to determine whether genotypic differences in acquired thermal tolerance were associated with changes in the pattern of heat shock protein synthesis. The pattern of heat shock protein synthesis was analyzed by 35S-methionine incorporation in wheat (Triticum aestivum L.) varieties exhibiting distinct levels of acquired thermal tolerance. Significant quantitative differences between the cultivars Mustang and Sturdy were observed in the HSP exhibiting apparent molecular weights of 16, 17, 22, 26, 33, and 42 Kilodaltons. Genotypic differences in the synthesis of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase were observed at 34°C. Two-dimensional electrophoretic analysis revealed unique proteins (16, 17, and 26 kilodaltons) in the thermal tolerant variety Mustang that were absent in the more thermal sensitive variety Sturdy. These results provide a correlation between the synthesis of specific low molecular weight heat shock proteins and the degree of thermal tolerance expressed following exposure to elevated temperatures.  相似文献   

14.
Tunicamycin is anucleoside antibiotic that inhibits protein glycosylation andpalmitoylation. The therapeutic use of tunicamycin is limited inanimals because of its toxic effects, particularly in cerebralvasculature. Tunicamycin decreases palmitoylation of the endothelialisoform of nitric oxide synthase, stimulates nitric oxide synthesis,and increases the concentration of intracellular calcium([Ca2+]i)in bovine aortic endothelial cells (B. J. Buckley and A. R. Whorton.FASEB J. 11: A110, 1997). In the present study,we investigated the mechanism by which tunicamycin alters[Ca2+]iusing the Ca2+-sensitive dye fura2. We found that tunicamycin increased[Ca2+]iwithout increasing levels of inositol phosphates. When cells wereincubated in the absence of extracellularCa2+,[Ca2+]irapidly rose in response to tunicamycin, although a full response wasnot achieved. The pool of intracellularCa2+ mobilized by tunicamycinoverlapped with that mobilized by thapsigargin. Extracellular nickelblocked a full response to tunicamycin when cells were incubated in thepresence of extracellular Ca2+.The effects of tunicamycin on[Ca2+]iwere partially reversed by washing out the drug, and the remainder ofthe response was inhibited by removing extracellularCa2+. These results indicate thattunicamycin mobilizes Ca2+ fromintracellular stores in a manner independent of phospholipase Cactivation and increases the influx ofCa2+ across the plasma membrane.

  相似文献   

15.
Application of Nod factors to growing, responsive root hairs of the bean Phaseolus vulgaris induces marked changes in both the intracellular cytosolic free calcium (Ca2+) and in the influx of extracellular [Ca2+]. The intracellular [Ca2+], which has been measured by ratiometric imaging in cells microinjected with fura-2-dextran (70 kDa), elevates within 5 min from approximately 400 n m to 1500 n m in localised zones in the root hair apex. Of particular note is the observation that the elevated regions of [Ca2+] appear to shift position during short time intervals. Increases in and fluctuations of the intracellular [Ca2+] are also observed in the perinuclear region after 10–15 min treatment with Nod factors. The extracellular Ca2+ flux, detected with the non-invasive, calcium specific vibrating electrode, is inwardly directed and also increases quickly in response to Nod factors from 13 pmol cm–2 s–1 to 28 pmol cm–2 s–1. Chitin-oligomers, which are structurally similar but biologically inactive when compared to the active Nod factors, fail to elicit changes in either intracellular or extracellular Ca2+. The similar timing and location of the intracellular elevations and the increased extracellular influx provide support for the idea that Ca2+ participates in secretion and cell wall remodelling, which occur in anticipation of root hair deformation and curling.  相似文献   

16.
Exposure of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers to 40°C for a period of 3 h results in the selective suppression of the synthesis and secretion of hydrolytic enzymes; other normal cellular protein synthesis continues during heat shock. This suppression is correlated with secretory protein mRNA destabilization and the dissociation of stacked ER lamellae during heat shock (Belanger et al. 1986, Proceedings of the National Academy of Sciences USA 83, pp. 1354–1358). In this report we examined the effect of exposure to extended periods of heat shock. If exposure to 40°C was continued for a period of 18 h, the synthesis of α-amylase, the predominant secreted hydrolase, resumed. This was accompanied by increased α-amylase mRNA levels and the reformation of ER lamellae. Though initial exposure (3 h) to 40°C reduced protein secretion to ~10% of that observed in aleurone cells maintained at 25°C, exposure for prolonged periods (16–20 h) permitted the resumption of protein secretion to ~66% of non-heat-shocked control levels. The resumption of normal secretory protein synthesis during prolonged exposure to 40°C was correlated with an increase in the incorporation of [14C]glycerol into phosphatidylcholine and an increase in the ratio of saturated to unsaturated fatty acids in lipids isolated from ER membrane preparations. Increased fatty acid saturation has been demonstrated to enhance thermostability in biological membranes, and such changes in membrane composition may be important to the recovery of secretory protein synthesis at the ER.  相似文献   

17.
18.
We determined whether activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and a subsequent increase in cytosolic calcium concentration ([Ca2+]i) was an obligatory signaling event mediating the increase in transendothelial permeability induced by bradykinin (BK) and α-thrombin (α-T). Both BK and α-T (each at a concentration range of 0.01–1 μM) caused dose-dependent increases in transendothelial 125I-albumin permeability in cultured bovine pulmonary artery endothelial cell monolayers. Both agonists also produced a rise in inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] by 10 sec that was followed by a prolonged increase in [Ca2+]i. Pretreatment of endothelial cells with the PLC inhibitor, 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dion [(U73122) at 10 μM for 15 min], prevented the increases in Ins(1,4,5)P3 and [Ca2+]i induced by both BK and α-T. However, inhibition of PLC with U73122 or another PLC inhibitor, neomycin, did not prevent the increase in endothelial permeability induced by either agonist. In contrast, depletion of cellular protein kinase C (PKC) with phorbol-12-myristate 13-acetate (0.01 μM for 20 hr) increased both BK- and α-T-induced phosphoinositide turnover but inhibited the agonist-induced increase in permeability. A PKC inhibitor, staurosporine (5 μM) likewise inhibited the BK-induced increase in endothelial cell permeability to albumin. We conclude that increases in endothelial permeability induced by the inflammatory mediators, BK and thrombin, can occur independently of PLC activation and increased [Ca2+]i but that a PKC-dependent pathway is required for the permeability response. J. Cell. Physiol. 173:387–396, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
K K Tai  C F Bian  T M Wong 《Life sciences》1992,51(12):909-913
The effect of two specific kappa-agonists, dynorphinA1-13 and U50,488H, on intracellular free calcium [Ca]i in isolated rat ventricular myocytes was studied. A spectrofluorimetric method using fura 2 as calcium indicator was employed. It was found that both agonists increased [Ca]i dose-dependently. The effect was attenuated by Mr 2266, a kappa-antagonist, indicating that the effect is a kappa-receptor mediated event. The effect was abolished by pretreatment with ryanodine, a drug that mobilizes calcium from the sarcoplasmic reticulum. It was, however, not affected by nifedipine, a calcium antagonist or removal of external calcium. The results indicate that the increase in [Ca]i due to kappa-opioid receptor stimulation results primarily from mobilization of calcium from an intracellular pool.  相似文献   

20.
Heterogeneous nuclear RNA is normally complexed with a specific set of proteins, forming ribonucleoprotein particles termed hnRNP. These particles are likely to be involved in mRNA processing. We have found that the structure of hnRNP is profoundly altered during the heat shock response in Drosophila cultured cells. Although hnRNA continues to be synthesized at a near-normal rate during heat shock, its assembly into hnRNP is incomplete, as evidenced by a greatly decreased protein content of the particles in Cs2SO4 density gradients. RNA-protein cross-linking conducted in vivo (Mayrand and Pederson, Proc. Natl. Acad. Sci. U.S.A. 78:2208-2212, 1981) also reveals that hnRNA made during heat shock is complexed with greatly reduced amounts of protein. The block of hnRNP assembly occurs immediately upon heat shock, even before the onset of heat shock protein synthesis. Additional experiments reveal that hnRNP assembled normally at 25 degrees C subsequently disassembles during heat shock. The capacity for normal hnRNP assembly is gradually restored after heat-shocked cells are returned to 25 degrees C. Heat-shocked mammalian cells also show a similar block in hnRNP assembly. We suggest that incomplete assembly of hnRNP during heat shock leads to abortive processing of most mRNA precursors and favors the processing or export (or both) of others whose pathway of nuclear maturation is less dependent on, or even independent of, normal hnRNP particle structure. This hypothesis is compatible with a large number of previous observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号