首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of endogenous glucagon and insulin on the hepatic glycogen and triglyceride storage syndrome in propylthiouracil (PTU)-induced hypothyroidism was investigated in the chick. PTU feeding in the diet resulted in a progressive increase in liver glycogen concentration associated with a concomitant decrease in hepatic glucose-6-phosphatase (G-6-Pase) activity. Plasma glucagon level was significantly decreased and insulin significantly increased after two days of PTU administration. These enzyme and hormone changes were associated with a significant increase in hepatic glucose-6-phosphate (G-6-P) and a decrease in cyclic AMP levels. Although our results do not directly prove, the data does suggest that the hepatic glycogen storage syndrome observed in the PTU-induced hypothyroidism in the chick is mediated through changes in pancreatic glucagon and insulin secretion. The extent of glycogen accumulation was inversely related to G-6-Pase which is a rate limiting glycogenolytic enzyme. A significant increase in the plasma insulin/glucagon ratio, along with a significant decrease in the hepatic cyclic AMP concentration, could most likely also account for the excessive hepatic triglyceride accumulation in the PTU-treated chicks.  相似文献   

2.
1. Glycogen was identified ultrastructurally in undifferentiated type-II cells of the lung of the day 16 chick embryo. 2. By 4 days after hatching, glycogen in type-II cells could not be observed, although lungs were actively secreting surfactant. 3. Biochemical measurements of pulmonary glycogen revealed a depletion during days 14-20 of incubation, corroborating ultrastructural data. 4. Using lung slices, 14C-glucose was incorporated in vitro into pulmonary surfactant phospholipids at a high rate in day 14 embryos, and a significantly lower rate on day 19. 5. Hypophysectomy resulted in sub-normal initial accumulation of pulmonary glycogen on day 14 of development, but did not alter the depletion pattern after day 16. 6. Thus, glycogen stores may contribute to avian embryonic pulmonary surfactant, and accumulation of early stores may be under hormonal control.  相似文献   

3.
Polychlorinated biphenyls (PCB) and other aryl hydrocarbon receptor (AHR) agonists induce oxidative stress and alter membrane lipid peroxidation and fluidity. This study tested the hypothesis that PCB-induced changes in membrane properties impact membrane beta-adrenoceptor (beta-AR) affinity and capacity in chick embryo hepatocytes. Embryos were injected into the air cell with 1.6 microg 3,3',4,4',5-pentachlorobiphenyl (PCB 126)/kg egg at day 0, and incubated to day 19 when livers were removed. This dose resulted in hepatic PCB 126 levels of 0.67 ng/g liver or 10.2 ng/g liver lipid; levels in untreated embryos were non-detectable. Hepatic microsomal EROD activity was elevated by approximately 12-fold and embryo mortality was significantly increased compared with the untreated group. Hepatic lipid peroxidation increased and membrane order (steady-state fluorescence anisotropy values) decreased with in ovo PCB 126 exposure. Consistent with changes in membrane structure, hepatic beta-AR affinity for CGP 12177 significantly decreased (Kd increased) without changes in receptor numbers. This study demonstrates that in ovo exposure to PCB 126 in chick eggs significantly impacted embryo survival, and this was correlated with altered hepatic membrane structure and ultimately membrane function.  相似文献   

4.
1. Forty-eight chicks (21 days old) were implanted (+/- 50 mg 17-beta estradiol; EBI) and fed diets containing +/- 0.1% propylthiouracil (PTU) for 7 days to determine the role of gonadal hormones in the regulation of energy metabolism in the hypothyroid chick. 2. In vitro lipogenesis (IVL) and glucose production (NGP) were measured in liver explants. 3. Liver glycogen (GLY) metabolism was studied in particulate fractions (50,000 x g) of liver. 4. Glycogen synthetase activity (GLYSYN) was assayed in the presence of glucose-6-phosphate (G-6P; 0, 0.15 and 10 mM) to determine activation states. 5. PTU and EBI increased (P less than 0.05) both GLY concentration and GLYSYN activity in chicks but, did not increase G-6P activity ratios or the in vitro activation of GLYSYN. 6. Both PTU and EBI increased (P less than 0.05) IVL and NGP. 7. Estradiol magnifies the effects of PTU in chicks suggesting an interaction between thyroid status and gonadal function.  相似文献   

5.
Suckling ability and maternal prolactin levels in hypothyroid rats   总被引:1,自引:0,他引:1  
Long-Evans rats and their offspring were made hypothyroid by addition of the antithyroid goitrogen 6-N-propylthiouracil (PTU) to the drinking water (0.1%) from the day of parturition. Serum concentrations of prolactin (PRL), thyroid-stimulating hormone (TSH) and thyroxine (T4) were determined by double radioimmunoassay (RIA). From the fifth postnatal day, body weight of PTU-treated pups was significantly lower than that of control rats, and a strikingly elevated serum TSH level and nondetectable amount of T4 were measured both in PTU-exposed mothers and their offspring at Day 10 postpartum. To test the youngs' suckling capability and the amount of maternal milk production, 10- and 15-day-old normal and PTU-treated pups were separated from their mothers for 4 hr in the morning and then reunited and allowed to suckle. Normal pups gained body weight at the end of both the first and second hour postreunion, while PTU pups gained only during the first hour and lost weight in the second hour of testing. When the pups were exchanged between normal and PTU mothers, opposite results were obtained, indicating that the reduced gain in hypothyroid rats was not due to impaired suckling capability, or insufficient sensory stimulation for milk secretion but to a decreased milk production of PTU mothers. In accordance with this, in lactating hypothyroid rats both the basal (presuckling) level and the suckling-induced rise of serum PRL were found significantly depressed.  相似文献   

6.
7.
Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks.

Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA.

These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.  相似文献   

8.
9.
In the present study the effect of thyroid hormone (T(3)) on oxidative stress parameters of mitochondria of rat liver is reported. Hypothyroidism is induced in male adult rats by giving 0.05% propylthiouracil (PTU) in drinking water for 30 days and in order to know the effect of thyroid hormone, PTU-treated rats were injected with 20 microg T(3)/100 g body weight/day for 3 days. The results of the present study indicate that administration of T(3) to hypothyroid (PTU-treated) rats resulted in significant augmentation of oxidative stress parameters such as thiobarbituric acid reactive substances and protein carbonyl content of mitochondria in comparison to its control and euthyroid rats. The hydrogen peroxide content of the mitochondria of liver increased in hypothyroid rats and was brought to a normal level by T(3) treatment. Induction of hypothyroidism by PTU treatment to rats also resulted in the augmentation of total and CN-sensitive superoxide dismutase (SOD) activities of the mitochondria, which was reduced when hypothyroid rats were challenged with T(3). Although CN-resistant SOD activity of the mitochondria remained unaltered in response to hypothyroidism induced by PTU treatment, its activity decreased when hypothyroid rats were injected with T(3). The catalase activity of the mitochondria decreased significantly by PTU treatment and was restored to normal when PTU-treated rats were given T(3). Total, Se-independent and Se-dependent glutathione peroxidase activities of the mitochondria were increased following PTU treatment and reduced when T(3) was administered to PTU-treated rats. The reduced and oxidised glutathione contents of the mitochondria of liver increased significantly in hypothyroid rats and their level was restored to normal when hypothyroid rats were injected with T(3). The results of the present study suggest that the mitochondrial antioxidant defence system is considerably influenced by the thyroid states of the body.  相似文献   

10.
Study of physiological angiogenesis and associated signalling mechanisms in adult heart has been limited by the lack of a robust animal model. We investigated thyroid hormone‐induced sprouting angiogenesis and the underlying mechanism. Hypothyroidism was induced in C57BL/6J mice by feeding with propylthiouracil (PTU). One year of PTU treatment induced heart failure. Both 12 weeks‐ (young) and 1 year‐PTU (middle age) treatment caused a remarkable capillary rarefaction observed in capillary density. Three‐day Triiodothyronine (T3) treatment significantly induced cardiac capillary growth in hypothyroid mice. In cultured left ventricle (LV) tissues from PTU‐treated mice, T3 also induced robust sprouting angiogenesis where pericyte‐wrapped endothelial cells formed tubes. The in vitro T3 angiogenic response was similar in mice pre‐treated with PTU for periods ranging from 1.5 to 12 months. Besides bFGF and VEGF164, PDGF‐BB was the most robust angiogenic growth factor, which stimulated notable sprouting angiogenesis in cultured hypothyroid LV tissues with increasing potency, but had little effect on tissues from euthyroid mice. T3 treatment significantly increased PDGF receptor beta (PDGFR‐β) protein levels in hypothyroid heart. PDGFR inhibitors blocked the action of T3 both on sprouting angiogenesis in cultured LV tissue and on capillary growth in vivo. In addition, activation of Akt signalling mediated in T3‐induced angiogenesis was blocked by PDGFR inhibitor and neutralizing antibody. Our results suggest that hypothyroidism leads to cardiac microvascular impairment and rarefaction with increased sensitivity to angiogenic growth factors. T3‐induced cardiac sprouting angiogenesis in adult hypothyroid mice was associated with PDGF‐BB, PDGFR‐β and downstream activation of Akt.  相似文献   

11.
Direct evidence that IGF-I has any significant effect on embryo growth is lacking. We therefore studied the effect of administration of IGF-I on the chick embryo in ovo. Five hundred ng pure IGF-I (purified from human plasma) were given to chick embryos on 2 occasions (7 and 14 d) by injection directly into the allantoic sac. Treated and control (saline injected) chicks hatched on the same day and were killed. IGF-I appeared to reach the tissues as the [35S]-sulphate uptake of treated sternal cartilage was significantly greater than that of control (P less than 0.02). However, there were no significant effects of treatment on total body weight, bone length measurements, organ (lung, liver, heart) weights, muscle DNA, RNA or protein levels. From these results we conclude that administration of exogenous IGF-I to the chick embryo at 7 and 14 d does not stimulate further growth of the chick embryo.  相似文献   

12.
Plasma homocysteine is decreased in the hypothyroid rat   总被引:4,自引:0,他引:4  
Recent clinical studies have indicated that plasma homocysteine was significantly increased in hypothyroid patients. Since hyperhomocysteinemia is an independent risk factor for cardiovascular disease we investigated homocysteine metabolism in hypothyroid rats. Hypothyroidism was induced in one study by addition of propylthiouracil (PTU) to the drinking water for 2 weeks. In a second study, thyroidectomized and sham-operated rats were used with thyroid hormone replacement via mini-osmotic pumps. Unlike the human hypothyroid patients, both groups of hypothyroid rats exhibited decreased total plasma homocysteine (30% in PTU rats, 50% in thyroidectomized rats) versus their respective controls. Thyroid replacement normalised homocysteine levels in the thyroidectomized rat. Increased activities of the hepatic trans-sulfuration enzymes were found in both models of hypothyroidism. These results provide a possible explanation for the decreased plasma homocysteine concentrations. The hypothyroid rat cannot be used as a model to study homocysteine metabolism in hypothyroid patients.  相似文献   

13.
M Nakazawa  T Ohno  S Miyagawa  A Takao 《Teratology》1989,39(6):555-561
It has been reported that acetylcholine induces cardiac anomalies in the chick embryo. Thus, we studied hemodynamic effects of this drug in the chick embryo and also compared them with those in the rat embryo since we found that the effect of caffeine was different between the chick and rat embryos. Acetylcholine was given at doses of 5, 0.5, and 0.05 micrograms into the vitelline vein in chick embryos at Hamburger-Hamilton stage 21 and at a dose of 0.5 micrograms into the placenta in rat embryos at gestational day 12. In the chick embryo, heart rate was reduced to 91, 88, and 87% of control at the end of injection of 0.05, 0.5, and 5 micrograms, respectively, then returned to the baseline level. Vitelline arterial blood pressure was 110% of control with 0.05 micrograms, 134% with 0.5 micrograms, and 142% with 5 micrograms at 1 min after injection. The dorsal aortic blood flow decreased with time after injection, but it was increased only by a 5 micrograms dose at the end of injection. The vascular resistance increased in a dose-dependent manner. In the rat embryo, the change of heart rate was qualitatively similar to that of the chick embryo. The blood pressure did not change significantly. The blood flow velocity at the outflow tract decreased at the end of injection, which indicated the decrease in cardiac output, along with slowing of heart rate, then returned to the control level thereafter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. The effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat. 2. Hypothyroidism, which was induced by administration of propylthiouracil to the rats, decreased fasting plasma levels of free fatty acids and increased plasma levels of glucose but did not significantly change plasma levels of insulin. 3. The sensitivity of the rates of glycogen synthesis to insulin was increased at physiological, but decreased at supraphysiological, concentrations of insulin. 4. The rates of glycolysis in the hypothyroid muscles were decreased at all insulin concentrations studied and the EC50 for insulin was increased more than 8-fold; the latter indicates decreased sensitivity of this process to insulin. However, at physiological concentrations of insulin, the rates of glucose phosphorylation in the soleus muscles of hypothyroid rats were not different from controls. This suggests that hypothyroidism affects glucose metabolism in muscle not by affecting glucose transport but by decreasing the rate of glucose 6-phosphate conversion to lactate and increasing the rate of conversion of glucose 6-phosphate to glycogen. 5. The rates of glucose oxidation were decreased in the hypothyroid muscles at all insulin concentrations.  相似文献   

15.
Evidence suggests a positive correlation between metabolic rate (VO2), or ambient oxygen (O2) tension, and the rate of formation of free radicals from O2. We have previously demonstrated that the rates of growth, VO2, protein and DNA accumulation, and the activity of cytochrome oxidase (a key mitochondrial respiratory enzyme), are increased significantly by exposing the chick embryo to 72 h of hyperoxia (60% O2) late in incubation. To test the hypothesis that the chick embryo responds to a prenatal alteration in O2 availability in such a way as to protect its tissues from oxidative damage, we have used the thiobarbituric acid assay to estimate lipid peroxidation (a major form of free radical damage) in selected organs from chick embryos exposed to altered O2 availability. We found significantly higher concentrations of malondialdehyde (MDA, a secondary product of lipid peroxidation) in liver than in chorioallantoic membrane, brain, or heart. However, embryos exposed to brief (72 h) hypoxia (15% O2) or hyperoxia (60% O2) late in incubation, or 48 h of such exposure followed by 24 h of incubation in pure O2, exhibited no significant difference in MDA levels compared to normoxic (21% O2) controls in any of the tissues examined. We conclude that the increase in aerobic metabolism induced in the chick embryo by 3 days of hyperoxia is not accompanied by an increase in lipid peroxidation. We postulate that the chick embryo adapts to hyperoxia in such a way as to escape additional free radical damage, perhaps by increasing the capacity of its antioxidant defenses to compensate for a potential increase in the rate of free radical generation.  相似文献   

16.
Incubation of chick embryo retinal explants with insulin resulted in a pronounced inhibition of thymidine uptake and incorporation into trichloroacetic acid-insoluble fraction. The inhibitory effect was highest with explants from embryos at day 7 and day 8, and thereafter it declined markedly with the age of embryos until day 11. A time-course study of the effect revealed that the inhibition occurred after a lag time; both thymidine uptake and incorporation were not altered significantly after 2-6 h of incubation with insulin, but began to decrease thereafter, reaching the maximum after 16 h. The effect was also dose dependent. After 16 h of incubation, the maximal inhibition (65%) was found with 10(-8) M insulin. Insulin caused similar effects also on thymidine kinase activity. All these effects were obtained by using minimal essential medium without glutamine. The addition of glutamine to the medium reduced the inhibitory effect of insulin. Retinas of chick embryos contain immunoreactive insulin. Retinal immunoreactive insulin was at the highest level (1.12 ng/mg of protein) in the youngest retinas studied (day 6), then it declined with age, reaching the lowest value (0.58 ng/mg of protein) at day 14. This value did not vary significantly during the third week of development. A potential biological role of insulin in retinal development is discussed.  相似文献   

17.
The effects of exogenous ethanol (EtOH) and/or glycine on chick (Gallus gallus) embryo viability, brain apoptosis (caspase-3 activities), and the endogenous levels of brain homocysteine (HoCys), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and SAM/SAH were studied. Embryonic EtOH exposure caused decreased embryo viability as measured by EtOH-induced reductions in % living embryos at theoretical stage 37, EtOH-induced reductions in embryo masses, and EtOH-induced reductions in brain caspase-3 (Casp-3) activities. Exogenous glycine failed to attenuate EtOH-induced decreased embryo viability and EtOH-induced increased brain Casp-3 activities. Embryonic EtOH exposure caused elevated levels of endogenous HoCys, decreased levels of SAM, increased levels of SAH, and decreased SAM/SAH ratios in embryonic chick brains. While exogenous glycine failed to attenuate EtOH-induced increased HoCys levels, exogenous glycine attenuated EtOH-induced decreased levels of SAM, increased levels of SAH, and decreased SAM/SAH levels in embryonic chick brains.  相似文献   

18.
It is well established that a rise in circulating thyroid hormone during the second half of chick embryo development significantly influences muscle weight gain and bone growth. We studied thyroid influence on differentiation in slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of embryos rendered hypothyroid by hypophysectomy or administration of an anti-thyroid drug. The expression of native myosins and myosin light chains (MLCs) was studied by electrophoretic analysis, and the myosin heavy chain (MHC) was characterized by immunohistochemistry. The first effects of hypothyroid status were observed at day 21 of embryonic development (stage 46 according to Hamburger and Hamilton). Analysis of myosin isoform expression in PLD muscles of hypothyroid embryos showed persistence of slow migrating native myosins and slow MLCs as well as inhibition of neonatal fast MHC expression, indicating retarded differentiation of this muscle. In ALD muscle, hypothyroidism maintained fast embryonic MHC and induced noticeable amounts of fast MLCs, thus delaying slow muscle differentiation. Our results suggest that thyroid hormones play a role in modulating the appearance of neonatal fast MHC and the disappearance of isomyosins transiently present during embryogenesis. However, T3 supplemental treatment would seem to compensate in part for the effects of hypothyroidism induced by hypophysectomy, suggesting that thyroid hormone might interfere with other factors also accounting for the observed effects.  相似文献   

19.
Rhythmic pineal melatonin biosynthesis develops in chick embryos incubated under a light (L)-dark (D) cycle of polychromatic white light. The spectral sensitivity of the embryonic pineal gland is not known and was investigated in this study. Broiler breeder eggs (Ross 308, n=450) were incubated under white, red, green or blue light under the 12L : 12D cycle. Melatonin was measured in extracts of pineal glands by radioimmunoassay. The daily rhythm of pineal melatonin levels in 20-day-old chick embryos was confirmed during the final stages of embryonic life under all four wavelengths of light with expected higher concentrations during dark- than light-times. The highest pineal melatonin levels were determined in chick embryos incubated under red and white light and lower levels under green light. The incubation under blue light resulted in the lowest melatonin biosynthesis. Pineal melatonin concentrations increased substantially on post-hatching day two compared with pre-hatching levels and we did not find differences between birds incubated and kept in either white or green light. Our results demonstrate a selective sensitivity of the chick embryo pineal gland to different wavelengths of light. Rhythmic melatonin production is suggested as a possible mechanism, which transfers information about the quality of ambient light to the developing avian embryo.  相似文献   

20.
ABSTRACT: BACKGROUND: Obesity is associated with poor reproductive outcomes, but few reports have examined thawed embryo transfer in obese women. Many studies have shown that increased lipid accumulation aggravates vitrification injury in porcine and bovine embryos, but oocytes of these species have high lipid contents (63 ng and 161 ng, respectively). Almost nothing is known about lipids in human oocytes except that these cells are anecdotally known to be relatively lipid poor. In this regard, human oocytes are considered to be similar to those of the mouse, which contain approximately 4 ng total lipids/oocyte. To date, no available data show the impact of obesity on vitrification in mouse embryos. The aim of this study was to establish a murine model of maternal diet-induced obesity and to characterize the effect of obesity on vitrification by investigating the survival rate and embryo developmental competence after thawing. METHODS: Prospective comparisons were performed between six--eight-cell embryos from obese and normal-weight mice and between fresh and vitrified embryos. Female C57BL/6 mice were fed standard rodent chow (normal-weight group) or a high-fat diet (obese group) for 6 weeks. The mice were mated, zygotes were collected from oviducts and cultured for 3 days, and six--eight-cell embryos were then selected to assess lipid content in fresh embryos and to evaluate differences in apoptosis, survival, and development rates in response to vitrification. RESULTS: In fresh embryos from obese mice, the lipid content (0.044 vs 0.030, P<0.01) and apoptosis rate (15.1% vs.9.3%, P<0.05)were significantly higher, the survival rate (83.1% vs. 93.1%, P<0.01) on day 5 was significantly lower, and embryo development was notably delayed on days 3--5 compared with the normal-weight group. After vitrification, no significant difference was found between thawed embryos from obese and normal-weight mice in apoptosis, survival, and development rates on days 4 and 5. In both groups, pre- and post-vitrification embryo apoptosis, survival, and development rates were similar. CONCLUSIONS: This study demonstrated that differences in survival and developmental rates between embryos from obese and normal-weight mice were eliminated after vitrification. Thus, maternal obesity does not aggravate vitrification injury, but obesity alone greatly impairs pre-implantation embryo survival and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号