首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetaminophen (AAP), the analgesic hepatotoxicant, is a powerful inducer of oxidative stress, DNA fragmentation, and apoptosis. The anti-apoptotic oncogene bcl-XL, and the pro-apoptotic oncogene p53 are two key regulators of cell cycle progression and/or apoptosis subsequent to DNA damage in vitro and in vivo. This study investigated the effect of AAP on the expression of these oncogenes and whether agents that modulate DNA fragmentation (chlorpromazine, CPZ) and DNA repair through poly(ADP-Ribose) polymerase (PARP) activity (4-AB: 4-aminobenzamide) can protect against AAP-induced hepatotoxicity by inhibiting oxidative stress, DNA fragmentation, and/or by altering the expression of bcl-XL and p53. In addition, the protective effect of supplemental nicotinamide (NICO), known to be depleted in cells with high PARP activity during DNA repair, is similarly evaluated. Male ICR mice (3 months old) were administered vehicle alone; nontoxic doses of 4-AB (400 mg/kg, ip), NICO (250 mg/kg, ip) or CPZ (25 mg/kg, ip), hepatotoxic dose of AAP alone (500 mg/kg, ip), or AAP plus one of the protective agents 1 h later. All animals were sacrificed 24 h following AAP administration. Serum alanine aminotransferase activity (ALT), hepatic histopathology and lipid peroxidation, DNA damage, and expression of bcl-XL and p53 (western blot analysis) were compared in various groups. All of the three agents significantly prevented AAP-induced liver injury, lipid peroxidation, DNA damage, and associated apoptotic and necrotic cell deaths, 4-AB being the most effective and NICO the least. Compared to control, there was a considerable decrease in bcl-XL expression, and an increase in p53 expression in AAP-exposed livers. The effect of AAP on bcl-XL was antagonized and that on p53 was synergized by the PARP-modulator 4-AB as well as NICO, whereas the endonuclease inhibitor CPZ was without effect on either bcl-XL or p53 expression. These results suggest that the hepatotoxic effect of AAP involves multiple mechanisms including oxidative stress, upregulation of endonuclease (or caspase-activated DNAse) and alteration of pro- and anti-apoptotic oncogenes. The observed antagonism of AAP-induced hepatocellular apoptosis and/or necrosis by modulators of multiple processes including DNA repair suggests the likelihood that a more effective therapy against AAP intoxication should involve a combination of antidotes.  相似文献   

2.
Role of caspases in acetaminophen-induced liver injury   总被引:2,自引:0,他引:2  
Jaeschke H  Cover C  Bajt ML 《Life sciences》2006,78(15):1670-1676
The mode of cell death after acetaminophen (AAP) overdose is controversially discussed. A recent study reported a protective effect of the pancaspase inhibitor Z-VAD-fmk against AAP toxicity in vivo but the mechanism of protection remained unclear. Therefore, the objective of this investigation was to assess if Z-VAD-fmk or the low doses of dimethyl sulfoxide (DMSO) used as solvent were responsible for the protection. Treatment with 10 mg/kg Z-VAD-fmk or diluted DMSO (0.25 ml/kg) for 15 min before but not 2.5 h after AAP prevented the oxidant stress (hepatic glutathione disulfide content; nitrotyrosine staining), DNA fragmentation (anti-histone ELISA, TUNEL assay) and liver injury (plasma ALT activities) at 6 h after administration of 300 mg/kg AAP. Even a lower dose (0.1 ml/kg) of DMSO was partially effective. DMSO pretreatment also attenuated the initial decline in hepatic glutathione levels. On the other hand, 10 microM Z-VAD-fmk was unable to prevent AAP-induced cell death in primary cultured mouse hepatocytes. We conclude that Z-VAD-fmk does not protect against AAP-induced liver injury and, therefore, caspases are not involved in the mechanism of AAP-induced liver injury. In contrast, the protection in vivo is caused by the diluted DMSO, which is used to solubilize the inhibitor Z-VAD-fmk. The results emphasize that even very low doses of DMSO, which are generally necessary to dissolve water-insoluble inhibitors, can have a profound impact on the toxicity of drugs and chemicals when metabolic activation is a critical aspect of the mechanism of cell injury.  相似文献   

3.
Oxidative stress is the major contributor to acetaminophen (AAP)-caused liver damage. It promotes mitochondrial oxidative stress and collapses the mitochondrial membrane potential to cause cell death. We have previously shown that a polyphenol extract of Hibiscus sabdariffa L. (HPE) potentiated the antioxidative effect. We further examined in this study the possible mechanism of HPE against AAP-caused liver damage. BABL/c mice were orally fed with HPE (100, 200 or 300 mg/kg) for two weeks prior to an i.p. injection of 1000 mg/kg of AAP. The mice were decapitated 6 h after the AAP injection to collect the blood and liver for further determination. The results show that pretreating with HPE increased the level of glutathione (GSH), decreased the level of lipid peroxidation, and increased catalase activity in the liver. A histopathological evaluation shows that HPE could decrease AAP-induced liver sterosis accompanied by a decreased expression of AIF, Bax, Bid, and p-JNK in the liver. An in vitro assay revealed that HPE could reduce AAP-induced death of BABL/c normal liver cells (BNLs), reverse the lost mitochondrial potency and improve the antioxidative status, similarly to the results of the in vivo assay. We show in this study that HPE possessed the ability to protect the liver from AAP-caused injury. The protective mechanism might be regulated by decreasing oxidative stress and attenuating the mitochondrial dysfunction.  相似文献   

4.
To understand the bioavailability and mechanistic pathways of cytoprotection by IH636 grape seed proanthocyanidin extract (GSPE, commercially known as ActiVin) a series of in vitro and in vivo studies were conducted. Comparative protective abilities of GSPE, and vitamins C and E, singly and in combination, were assessed against smokeless tobacco extract (STE)-induced oxidative stress, DNA fragmentation and apoptotic cell death in a primary culture of normal human oral keratinocytes. GSPE protected against STE-induced oxidative stress, DNA damage and apoptotic cell death, and provided better protection as compared to vitamins C and E, singly and in combination. The bioavailability and protective ability of GSPE were examined against acetaminophen (AP)-induced hepato- and nephrotoxicity, amiodarone (AM)-induced lung toxicity, doxorubicin (DX)-induced cardiotoxicity and dimethylnitrosamine (DM)-induced spleenotoxicity in mice. GSPE-fed animals were compared with GSPE-untreated mice to evaluate the protective ability of GSPE against these structurally diverse drugs/chemicals. Serum chemistry changes, histopathology and DNA damage were evaluated. Results indicate that GSPE preexposure prior to the drugs/chemicals such as AP, AM, DX or DM treatment, provided near complete protection in terms of serum chemistry changes and inhibition of both forms of cell death, e.g., apoptosis and necrosis. DNA damage in various tissues triggered by these agents was significantly reduced in GSPE-fed animals. Histopathological examination of multiple target organs provided similar data. The results suggest that GSPE exposure is bioavailable and provides significant multiorgan protection against structurally diverse drug- and chemical-induced toxic assaults. Further, these studies exhibited a series of mechanistic information including free radical scavenging ability, anti-endonucleolytic activity, cytochrome P450 2E1 inhibitory activity, anti-necrotic, anti-apoptotic and anti-carcinogenic activities, modulatory effects on antioxidative and apoptotic regulatory genes such as Bcl2, c-myc and p53, which may be responsible for the novel chemoprotective properties exhibited by GSPE.  相似文献   

5.
Kumari A  Kakkar P 《Life sciences》2012,90(15-16):561-570
AimsLupeol, a triterpene, possesses numerous pharmacological activities, including anti-malarial, anti-arthritic and anti-carcinogenic properties. The present study was conducted to explore the hepatoprotective potential of lupeol against acetaminophen (AAP)-induced hepatotoxicity in Wistar rats.Main methodsRats were given a prophylactic treatment of lupeol (150 mg/kg body weight, p.o., for 30 consecutive days) with a co-administration of AAP (1 g/kg body weight). The modulatory effects of lupeol on AAP-induced hepatotoxicity were investigated by assaying oxidative stress biomarkers, serum liver toxicity markers, pro/anti apoptotic proteins, DNA fragmentation and by the histopathological examination of the liver.Key findingsLupeol significantly prevented hepatic damage as evident from the histopathological studies and significant decline in serum trans-aminases. The alterations in cellular redox status (p < 0.01) and antioxidant enzyme activities together with the enhanced lipid peroxidation and protein carbonyl levels were also observed in the AAP-treated rats. In addition, significant ROS generation and mitochondrial depolarization were observed in this group. Co-administration of lupeol significantly decreased the level of serum transaminases, MDA and protein carbonyl content. It also prevented ROS generation and mitochondrial depolarization. Furthermore, lupeol enhanced the mitochondrial antioxidant and redox status and inhibited DNA damage and cell death by preventing the downregulation of Bcl-2, upregulation of Bax, release of cytochrome c and the activation of caspase 9/3.SignificanceThe conclusion of this study is that lupeol when co-administered with AAP effectively reduces oxidative stress and prevents AAP-induced hepatotoxicity by inhibiting critical control points of apoptosis.  相似文献   

6.
Ray SD  Parikh H  Bagchi D 《Mutation research》2005,579(1-2):81-106
Proanthocyanidins are of current interest as chemopreventive agents. The potential of the pre-, post- and co-exposure of proanthocyanidin-rich grape seed extract (GSPE) in preventing, reducing and/or delaying dimethylnitrosamine (N-nitrosodimethylamine, DMN)-induced liver tumorigenesis, carcinogenesis and mortality in male B6C3F1 mice was determined. Animals were divided into six groups: I—control, II—GSPE alone, III—DMN alone, IV—GSPE + DMN, V—DMN exposure (3 months) followed by GSPE diet (9 months) and VI—GSPE diet (3 months) + DMN (3 months) + control diet (6 months). DMN exposure (0–8 weeks: 5 mg/kg; 8–12 weeks: 10 mg/kg, i.p.) was limited to a total period of 3 months. GSPE was incorporated in laboratory chow (ADI: 100 mg/kg b.w.). Animals were sacrificed at 3 month intervals, and serum chemistry, liver histopathology, integrity of hepatic genomic DNA, antioxidant status, and rates of apoptotic and necrotic cell deaths were determined. DMN-induced liver tumor formation (85%) and animal lethality (38%) were powerfully antagonized by co-administration of GSPE + DMN (tumor positive: 45%; death: 11%). More than 75% of the DMN-treated animals had numerous tumors (five or more), which were significantly reduced in the GSPE + DMN group (35%). GSPE also negatively influenced other protocols specifically designed to test initiation and progression phases. Thus, GSPE was instrumental in modulating metabolic cascades and regulated orchestration of cell death processes involved during the multistage tumorigenic process. These results unraveled that long-term exposure to proanthocyanidin-rich grape seed extract may serve as a potent barrier to all three stages of DMN-induced liver carcinogenesis and tumorigenesis by selectively altering oxidative stress, genomic integrity and cell death patterns in vivo.  相似文献   

7.
8.
The protective effect of a fermented substance from Saccharomyces cerevisiae (FSSC) on liver injury caused by acetaminophen (AAP) was studied in mice. Mice were pretreated with FSSC (0.5-2.0 g/kg, p.o.) for 4 d, and on the fourth day, the mice received an overdose of AAP (500 mg/kg, i.p.). Subsequently, they were sacrificed at 7 h, and blood was drawn from the abdominal vein and liver samples were collected. Histological and biochemical examinations revealed that the administration of AAP caused liver injury in the mice, including increases in plasma alanine aminotransferase and asparate aminotransferase activities and decreases in the hepatic reduced form of glutathione (GSH) content and antioxidant enzyme activities. Prior to AAP treatment, the mice pretreated with FSSC showed significantly reduced levels of alanine aminotransferase (ALT) and aspirate aminotransferase (AST) activity. Liver histology in the FSSC-pretreated mice was significant. In these mice, pretreatment with FSSC also served to reduce hepatic GSH depletion and the inhibition of antioxidant enzyme activity caused by AAP overdose. In conclusion, oral administration of FSSC significantly reduced AAP-induced hepatic injury in the mice.  相似文献   

9.
We have investigated the effects of a smokeless tobacco extract (STE) on lipid peroxidation, cytochrome c reduction, DNA fragmentation and apoptotic cell death in normal human oral keratinocyte cells, and assessed the protective abilities of selected antioxidants. The cells, isolated and cultured from human oral tissues, were treated with STE (0-300 microl;g/ml) for 24 h. Superoxide anion production was determined by cytochrome c reductase. Oxidative tissue damage was determined by lipid peroxidation and DNA fragmentation, whereas apoptotic cell death was assessed by flow cytometry. STE-induced fragmentation of genomic DNA was also determined by gel electrophoresis. The comparative protective abilities of vitamin C (75 microM), vitamin E (75 microM), a combination of vitamins C & E (75 microM each), and a novel grape seed proanthocyanidin (IH636) extract (GSPE) (100 microg/ml) against STE induced oxidative stress and tissue damage were also determined. Following treatment of the cells with 300 microg STE/ml 1.5-7.6-fold increases in lipid peroxidation, cytochrome c reduction and DNA fragmentation were observed. The addition of the antioxidants to cells treated with STE provided 10-54% decreases in these parameters. Approximately 9, 29, and 35% increases in apoptotic cell death were observed following treatment with 100, 200, and 300 microg STE/ml, respectively, and 51-85% decreases in apoptotic cell death were observed with the antioxidants. The results demonstrate that STE produces oxidative tissue damage and apoptosis, which can be attenuated by antioxidants including vitamin C, vitamin E, a combination of vitamins C plus E and GSPE. GSPE exhibited better protection against STE than vitamins C and E, singly and in combination.  相似文献   

10.
The protective effect of a fermented substance from Saccharomyces cerevisiae (FSSC) on liver injury caused by acetaminophen (AAP) was studied in mice. Mice were pretreated with FSSC (0.5–2.0 g/kg, p.o.) for 4 d, and on the fourth day, the mice received an overdose of AAP (500 mg/kg, i.p.). Subsequently, they were sacrificed at 7 h, and blood was drawn from the abdominal vein and liver samples were collected. Histological and biochemical examinations revealed that the administration of AAP caused liver injury in the mice, including increases in plasma alanine aminotransferase and asparate aminotransferase activities and decreases in the hepatic reduced form of glutathione (GSH) content and antioxidant enzyme activities. Prior to AAP treatment, the mice pretreated with FSSC showed significantly reduced levels of alanine aminotransferase (ALT) and aspirate aminotransferase (AST) activity. Liver histology in the FSSC-pretreated mice was significant. In these mice, pretreatment with FSSC also served to reduce hepatic GSH depletion and the inhibition of antioxidant enzyme activity caused by AAP overdose. In conclusion, oral administration of FSSC significantly reduced AAP-induced hepatic injury in the mice.  相似文献   

11.
Previous studies from our laboratories have linked the protective abilities of IH636 grape seed proanthocyanidin extract (GSPE) with inactivation of anti-apoptotic gene bcl-XL, and modification of several other critical molecular targets such as DNA-damage/DNA-repair, lipid peroxidation and intracellular Ca2+ homeostasis. Especially, GSPE provided dramatic protection against acetaminophen (APAP)-induced hepatotoxicity, significantly increased bcl-XL expression in the liver [1], and antagonized both necrotic and apoptotic deaths of liver cells in vivo. However, it was not clear from this study whether anti-apoptogenic and anti-necrotic effects of GSPE were: (i) due to its interference with endonuclease activity, (ii) due to its antioxidant effect, or, (iii) due to its ability to inhibit microsomal drug metabolizing enzyme(s), such as CYP-4502E1. Since CYP-4502E1 primarily metabolizes acetaminophen in mice and rats, this study specifically focused on CYP-4502E1's catalytic activity in vitro. Overall this investigation compared the in vitro aniline hydroxylation patterns of: (i) in vivo GSPE-exposed and unexposed (control) mouse liver microsomes, (ii) induced (1% acetone in drinking water for 3 days) and uninduced rat liver microsomes in the presence and absence of GSPE in vitro, and (iii) control rat liver microsomes in the presence of an anti-APAP agent 4-aminobenzamide (4-AB) in vitro. For the in vivo assessment, male B6C3F1 mice were fed GSPE diet (ADI 100 mg/kg body wt) for 4 weeks, and liver microsomes were isolated from both control and GSPE-fed mice for aniline hydroxylation, a specific marker of CYP-4502E1 activity. Data show that hydroxylation was 40% less in microsomes from GSPE-exposed livers compared to control microsomes. Similarly, when rat liver microsomes were incubated with various concentrations of GSPE in vitro (100 and 250 g/ml), aniline hydroxylation was inhibited to various degrees (uninduced: 40 and 60% and induced: 25 and 50%, respectively with 100 and 250 g/ml). Influence of GSPE on hydroxylation patterns were compared with another hepatoprotective agent 4-aminobenzamide (4-AB), a well-known modulator of nuclear enzyme poly(ADP-ribose) polymerase, and the data shows that 4-AB did not alter aniline hydroxylation at all. Collectively, these results may suggest that GSPE has the ability to inhibit CYP-4502E1, and this is an additional cytoprotective attribute, in conjunction with its novel antioxidant and/or antiendonucleolytic potential.  相似文献   

12.
13.
Heat shock proteins (HSPs) induction confers protection against diverse forms of cellular injury. However, the mechanism by which HSPs exert cytoprotective effects remains unclear. Treatment of rat hepatocyte with transforming growth factor-beta1 (TGF-beta1) induces growth arrest followed by extensive cell death by apoptosis. In this study, the effects of preexposure to heat on TGF-beta1-induced apoptosis of cultured hepatocytes were examined. Treatment of hepatocytes for 24 h with TGF-beta1 resulted in significant apoptotic cell death, as demonstrated by DNA fragmentation, caspase activation, and hypodiploid DNA peak. Moreover, TGF-beta1-induced cell death was accompanied by an enhanced generation of reactive oxygen species and a loss of the mitochondrial membrane potential. These effects were attenuated when the hepatocytes were subjected to 43 degrees C for 20 min prior to the cytokine stimulation. The enhancement in HSP70 expression at mRNA and protein levels induced by heat preexposure was accompanied by an increase in mRNA levels of intracellular antioxidant enzymes. Heat treatment also prevented TGF-beta1-induced activation of nuclear factor kappa B (NF-kappaB) by preventing the degradation of the inhibitory protein kappa Balpha (IkappaBalpha). In conclusion, these data indicate that in the mechanism by which a mild heat pretreatment increases the resistance of hepatocytes to TGF-beta1-induced apoptotic cell death, the upregulation of catalase expression and a decrease in ROS generation are involved.  相似文献   

14.
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.  相似文献   

15.
Pentachlorophenol (PCP) and its salt are used extensively as biocide and wood preservative. Due to improper disposal, PCP has become an environmental pollutant and is now considered to be ubiquitos. Metabolic studies carried out in rodents or human liver homogenate have indicated that PCP undergoes oxidative dechlorination to form tetrachlorohydroquinone (TCHQ). The cytotoxicity, cell death mechanisms and gene expression of PCP and TCHQ are investigated in human liver and bladder cells and show that TCHQ induces apoptosis and DNA genomic fragmentation in bladder cells but not liver cells. No apoptotic features could be induced by treatment of PCP in both cell lines. The concentrations of PCP required to cause 50% cell death in T-24 and Chang liver cells were 5-10-fold greater than the concentrations of TCHQ. Several gene products are important in controlling the apoptotic and necrotic processes. Of these, hsp 70, CAS, bcl-2 and bax were studied. The expression of the hsp70 gene increased significantly (2-3-fold) in cells treated with TCHQ. However, no significant change was found in the cells treated with PCP. The expression of CAS gene decreased significantly in T-24 cells treated with both TCHQ and PCP. Whereas, no significant change was found in Chang liver cells with the same treatment. In addition, the expression of the bcl-2/bax protein decreased significantly in these two cell lines treated with TCHQ but not PCP.  相似文献   

16.
Lead-induced hepatotoxicity is characterized by an extensive oxidative stress. Grape seed procyanidin extract (GSPE) possesses abundant biological activities. Herein, we investigated the protective role of GSPE against lead-induced liver injury and determined the potential molecular mechanisms. In vivo, rats were treated with/without lead acetate (PbAc) (0.05%, w/v) in the presence/absence of GSPE (200 mg/kg). In vitro, hepatocytes were pretreated with/without GSPE (100 μg/ml) in the presence/absence of PbAc (100 μM). PbAc administration to rats resulted in anemia, liver dysfunction, lead accumulation in the bone and liver, oxidative stress, DNA damage and apoptosis. GSPE significantly attenuated these adverse effects, except lead accumulation in liver. GSPE also decreased the expression of miRNA153 and increased the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and levels of its downstream protein, and protein kinase B (AKT) phosphorylation in PbAc-induced liver injury. In primary hepatocytes treated with PbAc, GSPE increased hepatocyte viability and decreased lactate dehydrogenase release and reactive oxygen species levels. Dietary GSPE attenuated PbAc-induced liver injury in rats via an integrated mechanism associated with the miRNA153 and AKT/glycogen synthase kinase 3 beta/Fyn-mediated Nrf2 activation.  相似文献   

17.
The goal of these investigations was to measure levels of DNA in the plasma of mice following administration of hepatotoxic agents to induce apoptotic or necrotic cell death and determine any differences in the release of this marker depending upon death pathway. For this purpose, the effects of varying doses of anti-Fas, acetaminophen (APAP) or carbon tetrachloride (CCl4) were assessed in normal mice. Plasma DNA was measured fluorometrically by the dye PicoGreen while lactate dehydrogenase (LDH) and caspase 3, other molecules released with cell injury or death, were measured by enzymatic assays. Histology was used to assess the occurrence of apoptosis or necrosis. Results of these experiments indicate that increased blood DNA levels occurred with all three agents and were highest with anti-Fas and CCl4; caspase 3 levels were much higher with anti-Fas than the other agents. Histological examination confirmed the predominance of apoptotic death with anti-Fas and necrotic death with APAP and CCl4. These results indicate that increased blood DNA is common in hepatotoxic injury and is a feature of both apoptotic and necrotic death.  相似文献   

18.
Bile acid (BA) sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE) reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG) levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY). Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt) gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7α-hydroxylase (Cyp7a1), compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and complementary efficacy as a lipid-lowering combination therapy in conjunction with CHY by attenuating hepatic cholesterol synthesis, enhancing BA biosynthesis and decreasing lipogenesis, which warrants further investigation.  相似文献   

19.
Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.  相似文献   

20.
The goal of these investigations was to measure levels of DNA in the plasma of mice following administration of hepatotoxic agents to induce apoptotic or necrotic cell death and determine any differences in the release of this marker depending upon death pathway. For this purpose, the effects of varying doses of anti-Fas, acetaminophen (APAP) or carbon tetrachloride (CCl4) were assessed in normal mice. Plasma DNA was measured fluorometrically by the dye PicoGreen while lactate dehydrogenase (LDH) and caspase 3, other molecules released with cell injury or death, were measured by enzymatic assays. Histology was used to assess the occurrence of apoptosis or necrosis. Results of these experiments indicate that increased blood DNA levels occurred with all three agents and were highest with anti-Fas and CCl4; caspase 3 levels were much higher with anti-Fas than the other agents. Histological examination confirmed the predominance of apoptotic death with anti-Fas and necrotic death with APAP and CCl4. These results indicate that increased blood DNA is common in hepatotoxic injury and is a feature of both apoptotic and necrotic death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号