首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of experimentally-altered glutathione concentration on differentiation of the slime mold, Physarum polycephalum were examined. Spherulation was induced by transfer of Physarum from growth medium to a salts-only starvation medium. As differentiation proceeded, superoxide dismutase (SOD) activity in control cultures increased by as much as 21-fold. This increase in SOD activity paralleled the rate of differentiation. Glutathione (GSH) concentration decreased during differentiation by more than 80% in all cultures, regardless of the initial concentration. The rate of differentiation was inversely related to the initial GSH concentration and directly proportional to the SOD activity. These observations suggest that a free radical mechanism may be involved in the differentiation of Physarum microplasmodia into spherules.  相似文献   

2.
Microplasmodia of Physarum polycephalum differentiate into spherules when the CaCl2 concentration of their nutrient medium is increased to 54mM (high-calcium). The salts starvation medium routinely used to induce differentiation contains 8mM CaCl2. This medium will not induce spherulation in the absence of a calcium salt; no other metal is essential. High-calcium also induces the spherulation of a strain of Physarum that had not been previously observed to spherulate. The striking increase in superoxide dismutase activity (SOD) and the decrease in glutathione concentration (GSH) that are characteristic of salts-induced spherulation do not occur in salts media containing high-calcium. In the absence of calcium, no significant change in SOD is observed and very little change in GSH occurs. The immediate effect of the oxidative stress associated with spherulation may be the release of calcium stores into the cytosol. The parameters modulating this stress are, in turn, sensitive to exogenous calcium concentrations.  相似文献   

3.
A newborn rat model of retinopathy of prematurity was used to test the hypothesis that a lack of superoxide dismutase contributes to the retinal vaso-attenuation seen during exposure of the animals to hyperoxic conditions. To determine the endogenous superoxide dismutase activity of the retina under hyperoxic conditions, litters of albino rats were placed in either constant 80% ambient oxygen (constant hyperoxia), or placed in 21% oxygen (room air) immediately after birth. Every other day, for 14 days, several rat pups were sacrificed and their retinas removed for the determination of total superoxide dismutase (SOD) activity and manganese-associated SOD activity. An attempt was made to increase retinal SOD activity by intraperitoneal administration of exogenous SOD encapsulated in polyethylene glycol-modified liposomes. Additional litters were exposed to the same oxygen treatments and supplemented twice daily with either liposome-encapsulated superoxide dismutase in saline or liposomes containing saline without SOD. Animals were sacrificed at various time points for the determination of total superoxide dismutase activity and computer-assisted analysis of vessel density and avascular area. Animals raised in an atmosphere of constant 80% oxygen had significantly reduced levels of retinal superoxide dismutase activity through 6 days of life when compared to their room air-raised littermates. At 6 days of age, daily supplementation with liposome-encapsulated SOD had significantly increased retinal superoxide dismutase activity and reduced oxygen-induced vaso-attenuation as evidenced by increased vessel density and decreased avascular area, when compared to littermates exposed to constant hyperoxia that received control liposomes. Superoxide dismutase had no adverse effects on any of the animals regardless of treatment. Tracing experiments demonstrated that liposomes entered the retina and were found in cells morphologically resembling mi-croglia. Delivery of SOD to the retina via long-circulating liposomes proved beneficial, suggesting that restoration and/or supplementation of endogenous antioxidants in oxygen-damaged retinal tissue is a potentially valuable therapeutic strategy.  相似文献   

4.
Superoxide dismutase (SOD) was chemically modified by covalent linkage of fatty acid chains to the accessible epsilon-amino groups of the enzyme. This acylation method gave rise to a different enzyme entity (Ac-SOD) as evidenced by different physicochemical properties such as octanol/water partition coefficient and isoelectric point (pI) as compared to SOD. Ac-SOD was incorporated in conventional and long-circulating liposomes (LCL) and characterized in terms of incorporation efficiency, protein to lipid ratio (Prot/Lip), enzymatic activity retention and zeta potential. The observation that Ac-SOD liposomes present enzymatic activity on their external surface indicates that these formulations can act independent of rate and extent of enzyme release as required in case of SOD liposomes. The decrease of superficial charge of liposomal formulations containing Ac-SOD, as compared to SOD liposomes, may be related to the negatively charged enzyme molecules localized on the liposome surface. The comparative characterization of Ac-SOD and SOD liposomal formulations evidenced that the two enzyme forms differ substantially regarding their intraliposomal location: SOD tends to be localized in the internal aqueous spaces, whereas Ac-SOD is expected to be localized in the lipid bilayers of the liposomes, partially buried into the outer surface and exposed to the external medium. These liposomal structures with surface-exposed SOD were designated as Ac-SOD enzymosomes. The properties of these enzymosomes may influence the therapeutic effect, as the release of the enzyme from extravasated vesicles is no longer a necessary requirement for achieving dismutating activity within the inflamed target site.  相似文献   

5.
We have previously reported that calcium is required for the starvation-induced differentiation of the slime mold, Physarum polycephalum. With the exception of calcium, each component of the complex starvation medium may be withheld and the organism will still differentiate into spherules. The results of the present study reveal that spherulation will proceed normally when the microplasmoidal cells are transferred from nutrient medium to a citrate buffer containing only 8 mM CaCl2. Electron microscopy and X-ray microprobe analysis reveal that there is an initial increase in the population of calcium-containing mitochondrial granules when the microplasmodia are induced to differentiate. However, as differentiation proceeds, these granules decrease in number and are virtually absent from the mitochondria of mature spherules. The accumulation and depletion of calcium-containing granules is not observed in a nondifferentiating strain of Physarum cultured under standard conditions, but is observed when this strain is first treated with a calcium-enriched nutrient medium that conditions it for spherulation. Changes in the cellular concentrations of NADH and lipid peroxides, and in the activity of superoxide dismutase, correspond temporally to the pattern of increase and depletion of the calcium-containing inclusions. The oxidative stress associated with starvation-induced spherulation may be a consequence of the active accumulation of calcium; the mobilization of this calcium may then be the event that initiates differentiation.  相似文献   

6.
Superoxide dismutase (SOD) was chemically modified by covalent linkage of fatty acid chains to the accessible ε-amino groups of the enzyme. This acylation method gave rise to a different enzyme entity (Ac-SOD) as evidenced by different physicochemical properties such as octanol/water partition coefficient and isoelectric point (pI) as compared to SOD. Ac-SOD was incorporated in conventional and long-circulating liposomes (LCL) and characterized in terms of incorporation efficiency, protein to lipid ratio (Prot/Lip), enzymatic activity retention and zeta potential. The observation that Ac-SOD liposomes present enzymatic activity on their external surface indicates that these formulations can act independent of rate and extent of enzyme release as required in case of SOD liposomes. The decrease of superficial charge of liposomal formulations containing Ac-SOD, as compared to SOD liposomes, may be related to the negatively charged enzyme molecules localized on the liposome surface. The comparative characterization of Ac-SOD and SOD liposomal formulations evidenced that the two enzyme forms differ substantially regarding their intraliposomal location: SOD tends to be localized in the internal aqueous spaces, whereas Ac-SOD is expected to be localized in the lipid bilayers of the liposomes, partially buried into the outer surface and exposed to the external medium. These liposomal structures with surface-exposed SOD were designated as Ac-SOD enzymosomes. The properties of these enzymosomes may influence the therapeutic effect, as the release of the enzyme from extravasated vesicles is no longer a necessary requirement for achieving dismutating activity within the inflamed target site.  相似文献   

7.
Friend erythroleukemia cells (FELC) served as a model system for cell differentiation because these cells can be triggered to differentiate by a variety of chemical agents. Treatment with the classical inducer of differentiation, hexamethylene bisacetamide (HMBA), stimulated superoxide dismutase (SOD) activity, which increased in parallel with HMBA-induced differentiation. Furthermore, FELC were shown to differentiate in response to the addition of liposomes containing SOD. Oxidative treatment with liposomes containing D-amino acid oxidase or xanthine oxidase, cumene peroxide, or potassium superoxide also induced differentiation, whereas antioxidants such as alpha-tocopherol, butylated hydroxytoluene, or beta-carotene did not induce differentiation. Also, HMBA induction of differentiation was suppressed by treatment with antioxidants.  相似文献   

8.
Differentiation of the white mutant (LU887 x LU897) strain of Physarum polycephalum leading to spherule formation can be induced by CaCl(2) if the concentration in the nutrient medium is increased by 5mM prior to the transfer to a non-nutrient salts medium. All stages previously reported for the typical (M(3)cVII) strain of Physarum polycephalum from microplasmodia to spherules are seen but the mutant lacks the synchrony that the replacement technique induces in the typical strain. X-ray microanalyses locate calcium and phosphorus in granules in mitochondria and in the cytoplasm of specimens fixed without osmium. Mitochondria accumulate calcium-containing granules during early differentiation and appear to be essentially without granules in mature spherules. Mobilization of mitochondrial calcium is implicated in the initiation of differentiation. A longitudinally striated cytoplasmic inclusion is abundant in microplasmodia grown in media that have not been supplemented with additional calcium and is seen more rarely during calcium-induced spherulation. Whether or not this inclusion represents cytoplasmic contractile elements is unknown. The calcium-treated mutant strain, previously considered non-differentiating, may prove to be a good alternate model for the study of factors influencing differentiation. It was employed earlier as a control in studies of strains that readily spherulate in response to routine procedures.  相似文献   

9.
Increased cellular generation of partially reduced species of oxygen mediates the toxicity of hyperoxia to cultured endothelial cells and rats exposed to 95-100% oxygen. Liposomal entrapment and intracellular delivery of superoxide dismutase (SOD) to cultured porcine aortic endothelial cells increased the specific activity of cellular SOD up to 15-fold. The liposome-mediated augmentation of SOD activity persisted in cell monolayers and rendered these cells resistant to oxygen-induced injury in a cell SOD activity-dependent manner. Addition of free SOD to culture medium had no effect on cell SOD activity or resistance to oxygen toxicity. SOD and catalase-containing liposomes injected i.v. into rats increased lung-associated enzyme specific activities two- to fourfold. Liposome entrapment of both SOD and catalase significantly increased the circulating half-lives of these enzymes and was critical for prevention of in vivo oxygen toxicity. Free SOD and catalase injected i.v. in the absence or presence of control liposomes did not increase corresponding lung enzyme activities or survival time in 100% oxygen. These studies show that O2- and H2O2 are important mediators of oxygen toxicity and that intracellular delivery of oxygen protective enzymes can reduce tissue injury owing to overproduction of partially reduced oxygen species.  相似文献   

10.
The aim of this study was to investigate whether long-circulating liposomes can improve the anti-inflammatory activity of superoxide dismutase (SOD). Small-sized poly(ethyleneglycol) (PEG)-liposomes containing SOD were prepared via different preparation protocols and characterized in terms of encapsulation efficiency (EE), size, enzymatic activity and protein structure, to establish conditions where high EE can be combined with preservation of enzyme activity and structure. It was observed that structural information from circular dichroism analyses does not correlate with data on enzyme activity. SOD-containing PEG-liposomes prepared by the dehydration-rehydration method appeared to represent the most attractive formulation for in vivo evaluation. The therapeutic potential of selected SOD-containing PEG-liposomes was established and compared with SOD entrapped in stearylamine (SA)-liposomes and 'free' SOD upon intravenous (i.v.) injection in an arthritic rat model. Both small PEG-liposomes and SA-liposomes showed a superior therapeutic activity compared to 'free' SOD, with PEG-liposomes inducing stronger anti-inflammatory effects than SA-liposomes.  相似文献   

11.
Abstract. The herbicide paraquat was used to investigate the effects of oxidative stress on the spherulation of Physarum polycephalum microplasmodia. the responses of a white non-differentiating strain of Physarum were compared with those of a common yellow strain that readily spherulates in salts-only starvation medium. the addition of paraquat to the salts medium increased the specific activity of superoxide dismutase in both strains; it also induced an increase in the intracellular inorganic peroxide concentration in both strains. Glutathione concentration was higher in the paraquat-treated yellow strain than in the controls. Paraquat had no effect on glutathione concentration in white microplasmodia. Paraquat accelerated spherulation in yellow microplasmodia. the white microplasmodia responded to the herbicide by cleaving into structures similar to immature spherules; however, these structures were not viable. the results of this study support the hypothesis that free radicals are involved in cell state transitions.  相似文献   

12.
The herbicide paraquat was used to investigate the effects of oxidative stress on the spherulation of Physarum polycephalum microplasmodia. The responses of a white non-differentiating strain of Physarum were compared with those of a common yellow strain that readily spherulates in salts-only starvation medium. The addition of paraquat to the salts medium increased the specific activity of superoxide dismutase in both strains; it also induced an increase in the intracellular inorganic peroxide concentration in both strains. Glutathione concentration was higher in the paraquat-treated yellow strain than in the controls. Paraquat had no effect on glutathione concentration in white microplasmodia. Paraquat accelerated spherulation in yellow microplasmodia. The white microplasmodia responded to the herbicide by cleaving into structures similar to immature spherules; however, these structures were not viable. The results of this study support the hypothesis that free radicals are involved in cell state transitions.  相似文献   

13.
Rheumatoid arthritis (RA) is a prevalent and debilitating autoimmune disease that affects the joints. RA is characterized by an infiltration of the affected joint by blood-derived cells. In response to activation, these cells generate reactive oxygen species, resulting in an oxidative stress situation. One approach to counteract this oxidative stress situation is the use of antioxidants as therapeutic agents. The free radical scavenger enzyme superoxide dismutase (SOD) may be used as a therapeutic agent in rheumatoid arthritis, but its rapid elimination from the circulation is a major limitation. Targeted delivery of SOD may overcome this limitation. In this study, the utility of PEGylated liposomes (PEG-liposomes) for targeting SOD to arthritic sites was explored. The targeting of SOD to arthritic sites following intravenous administration of both PEG-liposomes and positively charged liposomes lacking PEG but containing stearylamine (SA-liposomes) in rats with adjuvant arthritis was studied. At 24 h post injection, the blood levels of long circulating liposomes with a mean size of 0.11 micrometer and 0.20 micrometer were 8- and 3-fold higher, respectively, as compared to the SA-liposomes. The majority of SOD administered in liposomal form remains within the liposomes when they circulate in the bloodstream. The highest target uptake was observed with PEG-liposomes with a mean size of 0.11 micrometer and the lowest uptake with the SA-liposomes. These results demonstrate that SOD can be targeted to inflamed sites most efficiently via small-sized PEG-liposomes. Small-sized PEG-coated liposomes are to be preferred if prolonged circulation and enhanced localization of SOD at arthritic sites are desired.  相似文献   

14.
15.
The aim of this study was to investigate whether long-circulating liposomes can improve the anti-inflammatory activity of superoxide dismutase (SOD). Small-sized poly(ethyleneglycol) (PEG)-liposomes containing SOD were prepared via different preparation protocols and characterized in terms of encapsulation efficiency (EE), size, enzymatic activity and protein structure, to establish conditions where high EE can be combined with preservation of enzyme activity and structure. It was observed that structural information from circular dichroism analyses does not correlate with data on enzyme activity. SOD-containing PEG-liposomes prepared by the dehydration-rehydration method appeared to represent the most attractive formulation for in vivo evaluation. The therapeutic potential of selected SOD-containing PEG-liposomes was established and compared with SOD entrapped in stearylamine (SA)-liposomes and ‘free’ SOD upon intravenous (i.v.) injection in an arthritic rat model. Both small PEG-liposomes and SA-liposomes showed a superior therapeutic activity compared to ‘free’ SOD, with PEG-liposomes inducing stronger anti-inflammatory effects than SA-liposomes.  相似文献   

16.
A strain of the acellular slime mould Physarum polycephalum degraded lipopolysaccharides (LPS) from a variety of bacteria. The anticomplementary (AC) activity of LPS was greatly reduced, as was the content of lauric, myristic, and palmitic acids, and the ability to sensitize erythrocytes to agglutination by antibody. These results indicate that Physarum has enzymes which reduce the lipid A moiety of LPS. In contrast, 2-keto-3-deoxy-D-manno-actanoic acid (KDO), immunodominant sugars, and beta-hydroxymyristic acid were scarcely affected. Both supernates and plasmodial extracts of Physarum had LPS-degradative activity and were able to attack both purified LPS and LPS in killed bacteria.  相似文献   

17.
Myxamoebae of Physarum polycephalum, strain Cld, were grown on agar lawns on live bacteria. Myxamoebae were harvested, fixed and stained with propidium iodide. Flow cytometry showed that, as in the case of Physarum plasmodia, there is no G1 phase during rapid exponential growth. However, an apparent G1 phase was observed at the end of exponential growth when the culture arrested with the G1 DNA content for about a day between growth and differentiation. Most myxamoebae differentiated into cysts, but some formed microplasmodia and others appeared to lose DNA. The cysts possessed the G2 phase DNA content and there was an S phase connecting the G1-arrested state with the encysted state. Encystment was blocked by hydroxyurea (HU) suggesting that DNA synthesis is essential for encystment. The natural temporary synchronization in G1 phase may provide the basis of a method for selecting mutants with a conditional block in G2 or M phases.  相似文献   

18.
A role for calmodulin in the regulation of steroidogenesis   总被引:2,自引:1,他引:1       下载免费PDF全文
Two approaches were used to study the possible role of calmodulin in the regulation of steroid synthesis by mouse adrenal tumor cells: trifluoperazine was used as an inhibitor of calmodulin and liposomes were used to deliver calmodulin into the cells. Trifluoperazine inhibits three steroidogenic responses to both ACTH and dibutyryl cyclic AMP: (a) increase in steroid production, (b) increased transport of cholesterol to mitochondria, and (c) increased side-chain cleavage by mitochondria isolated from cells incubated with ACTH or dibutyryl cyclic AMP. When calmodulin is introduced into the cells via liposomes, steroid synthesis is slightly stimulated. When calmodulin extensively dialyzed against EGTA, this stimulation is abolished. Ca(2+) introduced via liposomes was also without effect. However, when both calmodulin and Ca(2+) are introduced via liposomes (either in separate liposomes or in the same liposomes), steroid synthesis is stimulated. This stimulation does not occur when either anticalmodulin antibodies or EGTA is also present in the liposomes or when trifluoperazine is present in the incubation medium. Calmodulin and Ca(2+) presented together in liposomes to the cells stimulate transport of cholesterol to mitochondria, and side-chain cleavage activity is greater in mitochondria isolated from cells previously fused with liposomes containing calmodulin and Ca(2+) than in mitochondria from cells fused with liposomes containing buffer only. These observations suggest that calmodulin may be involved in regulating the transport of cholesterol to mitochondria, a process which is stimulated by ACTH and dibutyryl cyclic AMP and which may account, at least in part, for the increase in steroid synthesis produced by these agents.  相似文献   

19.
Thymidylate synthetase and thymidine kinase activities in wild type strain M3b and in thymidine kinase-deficient mutant TU63 of Physarum polycephalum are studied. Whenever nuclear division occurs in macroplasmodia of wild type, thymidine kinase and thymidylate synthetase activities sharply increase, although the increase of thymidylate synthetase activity is less pronounced than thymidine kinase activity. This is also true for other investigated nuclear divisions during the life cycle of P. polycephalum. It is shown for the first time that thymidylate synthetase is a periodically fluctuating enzyme during the naturally synchronous nuclear division cycle of P. polycephalum with a peak of specific activity in the S phase. In macroplasmodia, as well as after germination of microsclerotia of M3b, thymidine kinase is the dominant enzyme, whereas at the time of the precleavage mitosis in sporulating macroplasmodia thymidylate synthetase is the predominant enzyme. This study describes and compares both dTMP-synthesizing enzymes during proliferation and differentiation of the same organism.  相似文献   

20.
The effect of liposomes with different degree of oxidation on the zymosan-induced chemiluminescence (CL) of leukocytes was investigated. Non-oxidized liposomes did not influence significantly the CL response of leukocytes. In contrast previously oxidized liposomes increased CL even if liposomes and cells were separated by a dialysis membrane. Based on the observed increase of luminol-activated CL by oxidized liposomes, lipid peroxidation (LPO) products may be suggested to enhance cell activation. Zymosan-activated leukocytes did not affect the amount of malondialdehyde (MDA) in non-oxidized liposomes unless iron salts were added. Fe3+ + ADP added to non-oxidized liposomes triggered LPO. Both catalase and superoxide dismutase (SOD) prevented the effect. In experiments with previously oxidized liposomes the activated oxygen species produced by leukocytes did not increase the amount of MDA; on the contrary, they decreased it both in the presence and in the absence of chelated iron in the liposome suspension. The reaction between lipid hydroperoxide and O2- widely accompanied by CL. SOD decreased CL in this system by a factor of 1.7. On the other hand, peroxidized lipids may "opsonize" initially inactive particles: oxidized liposomes increased CL response of leukocytes similarly as opsonized zymosan routinely used as a phagocyte activator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号