首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated eight rat lymphocyte-myeloma hybrid cell lines producing monoclonal antibodies that react with the 21,000-dalton transforming protein (p21) encoded by the v-ras gene of Harvey murine sarcoma virus (Ha-MuSV). These antibodies specifically immunoprecipitate both phosphorylated and non-phosphorylated forms of p21 from lysates of cells transformed by Ha-MuSV. All eight react with the products of closely related ras genes expressed in cells transformed by two additional sarcoma viruses (rat sarcoma virus and BALB sarcoma virus) or by a cellular Harvey-ras gene placed under the control of a viral promoter. Three of the antibodies also react strongly with the p21 encoded by the v-ras gene of Kirsten MuSV. These same three antibodies immunoprecipitate the predominant p21 species synthesized normally in a variety of rodent cell lines, including the p21 produced at high levels in 416B murine hemopoietic cells. This suggests that an endogenous gene closely related to Kirsten-ras is expressed in these cells. The monoclonal antibodies have been used to confirm two properties associated with p21; localization at the inner surface of the membrane of Ha-MuSV-transformed cells, assayed by immunofluorescence microscopy, and binding of guanine nucleotides.  相似文献   

2.
We provide direct evidence that serine 17 is the major site of serine phosphorylation in p60v-src, the transforming protein of Rous sarcoma virus, and in its cellular homolog, p60c-src. The amino acid composition of the tryptic peptide containing the major site of serine phosphorylation in p60v-src was deduced by peptide map analysis of the protein labeled biosynthetically with a variety of radioactive amino acids. Manual Edman degradation revealed that the phosphorylated serine in this peptide was the amino terminal residue. These data are consistent only with the phosphorylation of serine 17. The major site of serine phosphorylation in chicken p60c-src, the cellular homolog of p60v-src, is contained in a tryptic peptide identical to that containing serine 17 in p60v-src of Schmidt Ruppin Rous sarcoma virus of subgroup A. Serine 17 is therefore also phosphorylated in p60c-src. The p60v-src protein encoded by Prague Rous sarcoma virus was found to contain two sites of tyrosine phosphorylation. The previously unrecognized site of tyrosine phosphorylation may be tyrosine 205 or possibly tyrosine 208. Treatment of Prague Rous sarcoma virus-infected cells with vanadyl ions stimulated the protein kinase activity of p60v-src and increased the phosphorylation of tyrosine 416 but not the phosphorylation of the additional site of tyrosine phosphorylation.  相似文献   

3.
Current studies were undertaken to compare the genomes of Kirsten murine sarcoma virus (Ki-MuSV), Harvey murine sarcoma virus (Ha-MuSV), and the replication-defective endogenous rat virus to understand the function of these viral RNAs. Genome organization and sequence homology were studied by fingerprinting large RNase T1-resistant oligonucleotides and by cross-protecting homologous oligonucleotides against RNase A and T1 digestion with complementary DNA prepared from each of the other viral RNA. Ki-MuSV and Ha-MuSV were found to share an extensive series of rat-derived oligonucleotides begining ca. 1 kilobase (kb) from the 3' end and extending to within 1.5 kb of the 5'end of Ki-MuSV RNA. The total map distance covered in ca. 5.5 kb. The eight oligonucleotides covering the 1.5 kb at the 5' end of Ki-MuSV RNA were not found in Ha-MuSV RNA. Five out of these eight oligonucleotides, however, could be designated with certainty to be of rat virus origin. Since Ha-MuSV is 6.5 kb in size and Ki-MuSV is 8 kb in size, the major difference between them is the 1.5 kb from the replication-defective endogenous rat virus sequences at the 5' end of Ki-MuSV not present in Ha-MuSV. Consistent with the difference in the genome structure, these two sarcoma viral RNA'S yielded distinct major translation products in cell-free systems, I.E., A 50,000-dalton polypeptide (P50) from Ki-MuSV and a 22,000-dalton polypeptide (p22) from Ha-MuSV. These polypeptides may provide the necessary protein makers for identifying in vivo virus-coded proteins.  相似文献   

4.
The phosphorylation sites of the P140gag-fps gene product of Fujinami avian sarcoma virus have been identified and localized to different regions of this transforming protein. FSV P140gag-fps isolated from transformed cells is phosphorylated on at least three distinct tyrosine residues and one serine residue, in addition to minor phosphorylation sites shared with Pr76gag. Partial proteolysis with virion protease p15 or with Staphylococcus aureus V8 protease has been used to generate defined peptide fragments of P140gag-fps and thus to map its phosphorylation sites. The amino-terminal gag-encoded region of P140gag-fps contains a phosphotyrosine residue in addition to normal gag phosphorylation sites. The two major phosphotyrosine residues and the major phosphorserine residue are located in the carboxy-terminal portion of the fps-encoded region of P140gag-fps. P140gag-fps radiolabeled in vitro in an immune complex kinase reaction is phosphorylated at only one of the two C-terminal tyrosine residues phosphorylated in vivo and weakly phosphorylated at the gag-encoded tyrosine and at a tyrosine site not detectably phosphorylated in vivo. Thus, the in vitro tyrosine phosphorylation of P140gag-fps is distinct from that seen in the transformed cell. A comparative tryptic phosphopeptide analysis of the gag-fps proteins of three Fujinami avian sarcoma virus variants showed that the phosphotyrosine-containing peptides are invariant, and this high degree of sequence conservation suggests that these sites are functionally important or lie within important regions. The P105gag-fps transforming protein of PRCII avian sarcoma virus lacks one of the C-terminal phosphotyrosine sites found in Fujinami avian sarcoma virus P140gag-fps. Partial trypsin cleavage of FSV P140gag-fps immunoprecipitated with anti-gag serum releases C-terminal fragments of 45K and 29K from the immune complex that retain an associated tyrosine-specific protein kinase activity. This observation, and the localization of the major P140gag-fps phosphorylation sites to the C-terminal fps region, indicate that the kinase domain of P140gag-fps is located at its C terminus. The phosphorylation of P140gag-fps itself is complex, suggesting that it may itself interact with several protein kinases in the transformed cell.  相似文献   

5.
GTPase-activating protein (GAP) stimulates the ability of p21ras to hydrolyze GTP to GDP. Since GAP is phosphorylated by a variety of activated or oncogenic protein-tyrosine kinases, it may couple tyrosine kinases to the Ras signaling pathway. The epidermal growth factor (EGF) receptor cytoplasmic domain phosphorylated human GAP in vitro within a single tryptic phosphopeptide. The same GAP peptide was also apparently phosphorylated on tyrosine in EGF-stimulated rat fibroblasts. Circumstantial evidence suggested that residue 460 might be the site of GAP tyrosine phosphorylation. This possibility was confirmed by phosphorylation of a synthetic peptide corresponding to the predicted tryptic peptide containing Tyr-460. Alteration of Tyr-460 to phenylalanine by site-directed mutagenesis diminished the in vitro phosphorylation of a bacterial GAP polypeptide by the EGF receptor. We conclude that Tyr-460 is a site of GAP tyrosine phosphorylation by the EGF receptor in vitro and likely in vivo. GAP Tyr-460 is located immediately C terminal to the second GAP SH2 domain, suggesting that its phosphorylation might have a role in regulating protein-protein interactions.  相似文献   

6.
Previous studies of premature chain termination mutants and in frame deletion mutants of the p21 ras transforming protein encoded by the transforming gene of Harvey murine sarcoma virus (Ha-MuSV) have suggested that the C terminus is required for cellular transformation, lipid binding, and membrane localization. We have now further characterized the post-translational processing of these mutants and have also studied two C-terminal v-rasH point mutants: one encodes serine in place of cysteine-186, the other threonine for valine-187. The Thr-187 mutant was transformation-competent, and its p21 protein was processed normally, as was the p21 encoded by a transformation-competent deletion mutant from which amino acids 166-175 had been deleted. The Ser-186 mutant was defective for transformation. The p21s encoded by the Ser-186 mutant and by the previously described transformation-defective mutants did not undergo the posttranslational processing common to biologically active ras proteins: their electrophoretic migration rate did not change, they remained in the cytosol, and they failed to bind lipid. Since the cell-encoded ras proteins also contain this cysteine, we conclude that this amino acid residue is required for all ras proteins.  相似文献   

7.
Mdm2 is a cellular oncoprotein the most obvious function of which is the down-regulation of the growth suppressor protein p53. It represents a highly phosphorylated protein but only little is yet known about the sites phosphorylated in vivo, the kinases that are responsible for the phosphorylation or the functional relevance of the phosphorylation status. Recently, we have shown that mdm2 is a good substrate for protein kinase CK2 at least in vitro. Computer analysis of the primary amino acid sequence of mdm2 revealed 19 putative CK2 phosphorylation sites. By using deletion mutants of mdm2 and a peptide library we identified the serine residue at position 269 which lies within a canonical CK2 consensus sequence (EGQELSDEDDE) as the most important CK2 phosphorylation site. Moreover, by using the mdm2 S269A mutant for in vitro phosphorylation assays this site was shown to be phosphorylated by CK2. Binding studies revealed that phosphorylation of mdm2 at S269 does not have any influence on the binding of p53 to mdm2.  相似文献   

8.
The p21 transforming protein coded for by the v-ras gene of Harvey murine sarcoma virus (Ha-MuSV) migrates as a doublet band between 21,000 and 23,000 daltons during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lower band of the doublet is designated p21, and the upper band is designated pp21 since it comigrates with the phosphorylated form of p21. By pulse-labeling with [35S] methionine, we detected a p21 precursor, pro-p21, which migrated as if it was approximately 1,000 daltons larger than p21. The precursor-product relationship was established by pulse-chase experiments with [25S] methionine in the presence of 100 micrograms of cycloheximide per ml, which inhibited all de novo protein biosynthesis. Within 4 h, pro-p21 was completely chased into p21, and during the next 24 h pp21 accumulated. Thus, formation of pp21 from p21 did not require de novo protein synthesis. By subcellular fractionation into cytosol amd membrane fractions, we found that pro-p21 was synthesized in a non-membrane-bound state and that shortly after its complete synthesis, the p21 product was associated with the membrane fraction. By selective cleavage of p21 at a unique aspartic acid-proline residue with 70% formic acid or with Staphylococcus aureus V8 protease, we found that the intramolecular site of pro-p21 processing was located in the C-terminal portion of the pro-p21 molecule. The possibilities that the precursor was involved in the assembly of p21 into the plasma membrane and, alternatively, that the processing was a step in the activation of p21 biochemical activities are discussed.  相似文献   

9.
UR2 is a newly characterized avian sarcoma virus whose genome contains a unique sequence that is not related to the sequences of other avian sarcoma virus transforming genes thus far identified. This unique sequence, termed ros, is fused to part of the viral gag gene. The product of the fused gag-ros gene of UR2 is a protein of 68,000 daltons (P68) immunoprecipitable by antiserum against viral gag proteins. In vitro translation of viral RNA and in vivo pulse-chase experiments showed that P68 is not synthesized as a large precursor and that it is the only protein product encoded in the UR2 genome, suggesting that it is involved in cell transformation by UR2. In vivo, P68 was phosphorylated at both serine and tyrosine residues. Immunoprecipitates of P68 with anti-gag antisera had a cyclic nucleotide-independent protein kinase activity that phosphorylated P68, rabbit immunoglobulin G in the immune complex, and alpha-casein. The phosphorylation by P68 was specific to tyrosine of the substrate proteins. P68 was phosphorylated in vitro at only one tyrosine site, and the tryptic phosphopeptide of in vitro-labeled P68 was different from those of Fujinami sarcoma virus P140 and avian sarcoma virus Y73-P90. A comparison of the protein kinases encoded by UR2, Rous sarcoma virus, Fujinami sarcoma virus, and avian sarcoma virus Y73 revealed that UR2-P68 protein kinase is distinct from the protein kinases encoded by those viruses by several criteria. Our results suggest that several different protein kinases encoded by viral transforming genes have the same functional specificity and cause essentially the same cellular alterations.  相似文献   

10.
p21v-H-ras, the transforming protein of Harvey murine sarcoma virus, contains a covalently attached lipid. Using thin-layer chromatography, we identified the acyl group as the 16-carbon saturated fatty acid palmitic acid. No myristic acid was detected in fatty acids released from in vivo-labeled p21v-H-ras. The p21v-K-ras protein encoded by Kirsten sarcoma virus was also palmitylated. The processing and acylation of p21v-K-ras however differed from that of p21v-H-ras. Three forms of [3H]palmitic acid-labeled p21ras proteins were detected in Kirsten sarcoma virus-transformed cells. This contrasted with Harvey sarcoma virus, in which two forms of p21v-H-ras contained palmitic acid. Analysis by partial proteolysis of p21v-H-ras labeled with [3H]palmitic acid suggested that all of the lipid found in intact p21v-H-ras was located in the C-terminal region. On sodium dodecyl sulfate-polyacrylamide gels, p21v-H-ras labeled with [3H]palmitic acid migrated slightly ahead of the majority of p21v-H-ras. Of the mature forms of p21v-H-ras, apparently only a subpopulation contains palmitic acid.  相似文献   

11.
Synthetic peptide substrates for a tyrosine protein kinase   总被引:10,自引:0,他引:10  
Immunoprecipitates containing the transforming protein of the avian sarcoma virus, Y73, together with its associated tyrosine-specific protein kinase, have an activity which will phosphorylate the synthetic peptide Lys-Leu-Ile-Glu-Asp-Asn-Glu-Tyr-Thr-Ala-Arg at the tyrosine residue. This peptide corresponds to 10 out of 11 amino acids surrounding the phosphorylated tyrosine in both pp60src and P90, the transforming proteins of Rous sarcoma virus and Y73 virus, respectively. The apparent Km for phosphorylation of the peptide was about 5 mM. A second peptide with the sequence Lys-Leu-Ile-Asp-Asn-Glu-Tyr-Thr-ala-Arg differing from the first peptide only by the absence of the glutamic acid 4 residues from the tyrosine was also phosphorylated, but the apparent Km for the reaction was 40 mM. Several sites of tyrosine phosphorylation in viral transforming proteins have been found to have one or more glutamic acids close to the phosphorylated tyrosine on the NH2-terminal side. Taken together with our in vitro phosphorylation studies, this suggests that the primary sequence surrounding target tyrosines may play a role in recognition of substrates by tyrosine protein kinases, and in particular, that glutamic acid residues on the NH2-terminal side may be important.  相似文献   

12.
Fujinami sarcoma virus (FSV) and PRCII are avian sarcoma viruses which share cellularly derived v-fps transforming sequences. The FSV P140gag-fps gene product is phosphorylated on three distinct tyrosine residues in transformed cells or in an in vitro kinase reaction. Three variants of FSV, and the related virus PRCII which lacks about half of the v-fps sequence found in FSV, encode gene products which are all phosphorylated at tyrosine residues contained within identical tryptic peptides. This indicates a stringent conservation of amino acid sequence at the tyrosine phosphorylation sites which presumably reflects the importance of these sites for the biologic activity of the transforming proteins. Under suitable conditions the proteolytic enzymes p15 and V8 protease each introduce one cut into FSV P140, p15 in the N-terminal gag-encoded region and V8 protease in the middle of the fps-encoded region. Using these enzymes we have mapped the major site of tyrosine phosphorylation to the C-terminal end of the fps region of FSV P140gag-fps. A second tyrosine phosphorylation site is found in the fps region of FSV P140 isolated from transformed cells, and a minor tyrosine phosphorylation site is found in the N-terminal gag-encoded region. Our results suggest that the C-terminal fps-encoded region is required for expression of the tyrosine-specific protein kinase activity.  相似文献   

13.
The EJ bladder carcinoma oncogene is activated by a point mutation in the c-rasH proto-oncogene at the 12th amino acid codon. In an attempt to understand the mechanism of oncogenic activation, a comparative study was undertaken to examine the metabolic turnover and subcellular localization of the p21 protein encoded by the EJ oncogene, the viral oncogene, and its normal cellular homolog. Pulse-labeling experiments indicated that both c-ras p21 proteins were synthesized by a very similar pathway, as was observed for the viral p21 protein of Harvey murine sarcoma virus. The pro-p21 proteins were detected in free cytosol, and the processed products were associated with plasma membrane. The intracellular half-life of p21 proteins was determined by pulse-labeling and chasing in the presence of excess unlabeled methionine. Although both p21 proteins of EJ and the normal c-ras genes which are not phosphorylated have a half-life of 20 h, the viral p21 protein of Harvey murine sarcoma virus which includes a phosphorylated form is much more stable in cells, having a half-life of 42 h, apparently due to phosphorylation.  相似文献   

14.
Rodent fibroblasts infected with the ts371 Kirsten murine sarcoma virus (KiMuSV) are temperature sensitive for the maintenance of transformation because of the production of an abnormal p21 protein. We cloned the ts371 KiMuSV provirus from the genome of a conditionally transformed nonproducer cell line, ts371 KiMuSV NRK clone 5 (T. Y. Shih, M. O. Weeks, H. A. Young, and E. M. Scolnick, J. Virol. 31:546-556, 1979). The molecularly cloned virus had 1,000-fold lower transformed focus-forming activity at 39 degrees C than at 34 degrees C. The ts371-v-Ki-ras gene differed from the wild type (wt) by a single point mutation, resulting in the substitution of arginine for glutamine at amino acid residue 43 of the encoded p21. A second difference from the published sequence for wt v-Ki-ras (N. Tsuchida, T. Ryder, and E. Ohtsubo, Science 217:937-939, 1982) at amino acid residue 37 was found. However, on sequencing the wt v-Ki-ras in this region, we found that it also contained a glutamate at residue 37. Preliminary characterization of bacterially expressed wt and ts371-v-Ki-ras p21 proteins is discussed.  相似文献   

15.
The phosphorylation and activation of tyrosine hydroxylase was examined in PC12 cells following depolarization with KCl or treatment with nerve growth factor. Both treatments activate tyrosine hydroxylase (TH) and increase enzyme phosphorylation. Site-specific analysis of the tryptic phosphopeptides of TH isolated from [32P]phosphate-labeled PC12 cells demonstrated that the major phosphorylated peptide (termed "H25") did not contain any of the previously reported phosphorylation sites. Phosphoamino acid analysis of this peptide demonstrated that the phosphorylated residue was a serine. Synthetic tryptic peptides containing putative phosphorylation sites were prepared, and subjected to high performance liquid chromatography analysis and isoelectric focusing. The tryptic phosphopeptide containing serine 31 comigrated with the H25 peptide during both of these analytical techniques. The tryptic phosphopeptide produced by the phosphorylation of tyrosine hydroxylase by the recently discovered proline-directed protein kinase and the phosphorylated synthetic phosphopeptide TH2-12 are clearly separated from H25 by this analysis. We conclude that serine 31 is phosphorylated during KCl depolarization and nerve growth factor treatment of PC12 cells and that this phosphorylation is responsible for the activation of tyrosine hydroxylase. Since this site is not located in a sequence selective for any of the "classical" protein kinases, we suggest that a novel protein kinase may be responsible for the phosphorylation of this site. Since serine 31 has a proline residue on the carboxyl-terminal side, the possibility that this kinase may be related to the recently reported proline-directed protein kinase is discussed. Other sites that are also phosphorylated on TH during KCl depolarization include serine 19, which is known to be phosphorylated by calmodulin-dependent protein kinase II. A schematic model for the regulation of tyrosine hydroxylase activity by phosphorylation of the NH2-terminal regulatory domain is presented.  相似文献   

16.
Recent work has identified a cascade of membrane bound protein kinases in Ehrlich ascites tumor cells. These enzymes, designated PKL, PKS and PKM, are present in both Ehrlich tumor and mouse brain, but the cascade is active only in the tumor tissue. We have now purified a fourth protein kinase, PKF, that is also associated with this cascade. Protein kinase F prosphorylates PKL and is phosphorylated by PKS. The position of this kinase in the cascade is as follows, where the arrows denote phosphorylation: [Formula: see text] The phosphorylation by PKF, like phosphorylation by the other kinases, is at a tyrosine residue and causes the substrate kinase (PKL) to become active. The role of the tyrosine phosphorylation in activating these kinases is described in detail elsewhere. One result of activation of the cascade is the phosphorylation of the beta subunit of the Na+K+-ATPase, which causes inefficient Na+ pumping and is at last in part responsible for the high aerobic glycolysis of Ehrlich ascites tumor cells. By several criteria protein kinase F from Ehrlich cells is homologous to the src gene product (pp60src) from avian sarcoma viruses. Antiserum raised against PKF and sera from rabbits bearing rous sarcoma virus (RSV)-induced tumors quantitatively precipitate the same 60 kd phosphoprotein from cell lysates of three different RSV-transformed cell lines. Both proteins phosphorylate PKL and a 130 kd cytoskeletal protein (vinculin). The tryptic maps of these proteins are closely similar. Both proteins bind specifically to PKL covalently coupled to Sepharose. We used this latter observation to facilitate the purification of pp60 src from RSV-transformed cells.  相似文献   

17.
The herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a 63-kDa phosphoprotein required for viral replication. ICP27 has been shown to contain both stable phosphate groups and phosphate groups that cycle on and off during infection (K. W. Wilcox, A. Kohn, E. Sklyanskaya, and B. Roizman, J. Virol. 33:167-182, 1980). Despite extensive genetic analysis of the ICP27 gene, there is no information available about the sites of the ICP27 molecule that are phosphorylated during viral infection. In this study, we mapped several of the phosphorylation sites of ICP27 following in vivo radiolabeling. Phosphoamino acid analysis showed that serine is the only amino acid that is phosphorylated during infection. Two-dimensional phosphopeptide mapping showed a complex tryptic phosphopeptide pattern with at least four major peptides and several minor peptides. In addition, ICP27 purified from transfected cells yielded a similar phosphopeptide pattern, suggesting that cellular kinases phosphorylate ICP27 during viral infection. In vitro labeling showed that protein kinase A (PKA), PKC, and casein kinase II (CKII) were able to differentially phosphorylate ICP27, resulting in distinct phosphopeptide patterns. The major phosphorylation sites of ICP27 appeared to cluster in the N-terminal portion of the protein, such that a frameshift mutant that encodes amino acids 1 to 163 yielded a phosphopeptide pattern very similar to that seen with the wild-type protein. Further, using small deletion and point mutations in kinase consensus sites, we have elucidated individual serine residues that are phosphorylated in vivo. Specifically, the serine at residue 114 was highly phosphorylated by PKA and the serine residues at positions 16 and 18 serve as targets for CKII phosphorylation in vivo. These kinase consensus site mutants were still capable of complementing the growth of an ICP27-null mutant virus. Interestingly, phosphorylation of the serine at residue 114, which lies within the major nuclear localization signal, appeared to modulate the efficiency of nuclear import of ICP27.  相似文献   

18.
Functional organization of the Harvey murine sarcoma virus genome.   总被引:27,自引:11,他引:16       下载免费PDF全文
The comparative infectivity of Harvey murine sarcoma virus (Ha-MuSV) DNA for NIH 3T3 cells was determined for supercoiled Ha-MuSV DNA molecularly cloned in lambda phage and pBR322 at its unique EcoRI site (which is located near the middle of the 6-kilobase pair [kbp] unintegrated linear viral DNA) and for two cloned subgenomic fragments: one was 3.8 kbp and lacked about 1 kbp from each side of the EcoRI site, and the second did not contain the 3 kbp of the unintegrated linear viral DNA located on the 3' side of the EcoRI site. Each subgenomic DNA induced foci of transformed cells, but with a lower relative efficiency then genomic DNA. Transfection with intact vector Ha-MuSV DNA yielded results similar to those obtained after separation of Ha-MuSV DNA from vector DNA. Cells lines were then derived from individual foci transformed with each type of viral DNA. Focus-forming virus was recovered from transformed cells after superinfection with a helper-independent virus, but the efficiency varied by several orders of magnitude. For several transformed lines, the efficiency of recovery of focus-forming virus was correlated with the structure of the Ha-MuSV DNA in the cells before superinfection. When 32P-labeled Ha-MuSV DNA probes specific for sequences on either the 3' or 5' side of the EcoRI site were used to analyze the viral RNA in the transformed cell lines, all lines were found to hybridize with the 5' probe, but some lines did not hybridize with the 3' probe. The transformed lines contained high levels of the Ha-MuSV-coded p21 or its associated GDP-binding activity. We conclude that the transforming region and the sequences that code for the viral p21 protein are both located within the 2 kilobases closest to the 5' end of the Ha-MuSV genome.  相似文献   

19.
Rasheed rat sarcoma virus, derived by in vitro cocultivation of two rat cell lines (Rasheed et al., Proc. Natl. Acad. Sci. U.S.A. 75:2972-2976, 1978), has been reported to code for a protein of 29,000 Mr, immunologically related to the 21,000 Mr src gene product of Harvey and Kirsten sarcoma viruses. Rat sarcoma virus p29 was thought to contain at least part of a rat type C virus structural protein, since antiserum prepared against whole rat virus was able to immunoprecipitate rat sarcoma virus p29 but not Harvey or Kirsten sarcoma virus p21 (Young et al., Proc. Natl. Acad. Sci. U.S.A. 76:3523-3527, 1979). We now report that antiserum directed against rat type C virus p15, but not viral p12, p10, or p27, immunoprecipitated rat sarcoma virus p29. The p15 antiserum was also able to immunoprecipitate both denatured p29 and a peptide derived by V-8 protease cleavage of p29, indicating that this antiserum contains antibodies directed against primary amino acid determinants. Finally, five separate isolates of rat sarcoma virus were found to code for p29, which indicates that a highly specific site of recombination is involved in the generation of sarcoma viruses in rat cells.  相似文献   

20.
The major nucleocapsid protein of avian retroviruses, pp 12, binds to single-stranded viral RNA with high affinity. Phosphorylation at Ser-40 is necessary for this binding. In order to examine the role of phosphorylation of serine 40 in the biological function of pp 12, we have introduced a series of amino acid substitutions at this position in the Rous sarcoma virus (Pr-C) protein. Substitution of threonine, alanine, or three other amino acids for Ser-40 had very little or no detectable effect on viral replication, nor did the control substitution of glycine for Ser-43, a nonphosphorylated residue. In vivo and in vitro, the Ala-40 and probably the Thr-40 substituted p 12 proteins are phosphorylated at alternative sites which are phosphorylated to a minor extent in vivo in the wild type protein. A study of the RNA binding properties of Ala-40 substituted p 12 has indicated that the protein has been stabilized in a high affinity RNA binding state which is independent of phosphorylation. The viability of the Ala-40 mutant virus indicates that this high binding affinity may be required for biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号