首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The relationship between chloroplast arrangement and diffusion of CO(2) from substomatal cavities to the chloroplast stroma was investigated in Arabidopsis thaliana. Chloroplast position was manipulated by varying the amount of blue light and by cytochalasin D (CytD) treatment. We also investigated two chloroplast positioning mutants. Chloroplast arrangement was assessed by the surface area of chloroplasts adjacent to intercellular airspaces (S(c)). Although it has been previously shown that long-term acclimation to high light is linked with a large S(c), we found that the short-term chloroplast avoidance response reduces S(c). This effect was not apparent in the blue-light-insensitive phot2 mutant, which did not show the avoidance response. As expected, the smaller S(c) induced by the avoidance response was coupled to a similar decrease in internal conductance. This reduction in internal conductance resulted in an increased limitation of the rate of photosynthesis. The limiting effect of S(c) on internal conductance and photosynthesis was also shown in chup1, a mutant with a constant small S(c) as the result of an unusual chloroplast arrangement. We conclude that chloroplast movements in A. thaliana can rapidly alter leaf morphological parameters, and this has significant consequences for the diffusion of CO(2) through the mesophyll.  相似文献   

2.
A novel A-Ci curve (net CO2 assimilation rate of a leaf -An- as a function of its intercellular CO2 concentration -Ci) analysis method (Plant, Cell & Environment 27, 137-153, 2004) was used to estimate the CO2 transfer conductance (gi) and the maximal carboxylation (Vcmax) and electron transport (Jmax) potentials of ageing, non-senescing Pseudotsuga menziesii leaves in relation to their nitrogen (N) content and protein and pigment composition. Both gi and the stomatal conductance (gsc) of leaves were closely coupled to Vcmax, Jmax and An with all variables decreasing with increasing leaf age. Consequently, both Ci and Cc (chloroplastic CO2 concentration) remained largely conserved through successive growing seasons. The N content of leaves, as well as the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and other sodium dodecyl sulfate-soluble proteins, increased during the first three growing seasons, then stabilized or decreased only slightly afterwards. Thus, the age-related photosynthetic nitrogen use efficiency (PNUE) decline of leaves was not a consequence of decreased allocation of N towards Rubisco and other proteins involved in bioenergetics and light harvesting. Rather, loss of photosynthetic capacity was the result of the decreased activation state of Rubisco and proportional down-regulation of electron transport towards the photosynthetic carbon reduction (PCR) and photorespiratory (PCO) cycles in response to a reduction of CO2 supply to the chloroplasts' stroma. This study emphasizes the regulatory potential and homeostaticity of Cc- rather than photosynthetic metabolites or Ci- in relation to the commonly observed correlation between photosynthesis and gsc.  相似文献   

3.
Models of stomatal conductance (gs) are based on coupling between gs and CO2 assimilation (Anet), and it is often assumed that the slope of this relationship (‘g1’) is constant across species. However, if different plant species have adapted to different access costs of water, then there will be differences in g1 among species. We hypothesized that g1 should vary among species adapted to different climates, and tested the theory and its linkage to plant hydraulics using four Eucalyptus species from different climatic origins in a common garden. Optimal stomatal theory predicts that species from sub‐humid zones have a lower marginal water cost of C gain, hence lower g1 than humid‐zone species. In agreement with the theory that g1 is related to tissue carbon costs for water supply, we found a relationship between wood density and g1 across Eucalyptus species of contrasting climatic origins. There were significant reductions in the parameter g1 during drought in humid but not sub‐humid species, with the latter group maintaining g1 in drought. There are strong differences in stomatal behaviour among related tree species in agreement with optimal stomatal theory, and these differences are consistent with the economics involved in water uptake and transport for carbon gain.  相似文献   

4.
Plants provide an excellent system to study CO(2) diffusion because, under light saturated conditions, photosynthesis is limited by CO(2) availability. Recent findings indicate that CO(2) diffusion in leaves can be variable in a short time range. Mesophyll CO(2) conductance could change independently from stomata movement or CO(2) fixing reactions and it was suggested that, beside others, the membranes are mesophyll CO(2) conductance limiting components. Specific aquaporins as membrane intrinsic pore proteins are considered to have a function in the modification of membrane CO(2) conductivity. Because of conflicting data, the mechanism of membrane CO(2) diffusion in plants and animals is a matter of a controversy vivid debate in the scientific community. On one hand, data from biophysics are in favor of CO(2) diffusion limiting mechanisms completely independent from membrane structure and membrane components. On the other, there is increasing evidence from physiology that a change in membrane composition has an effect on CO(2) diffusion.  相似文献   

5.
The subject of this paper, sun leaves are thicker and show higher photosynthetic rates than the shade leaves, is approached in two ways. The first seeks to answer the question: why are sun leaves thicker than shade leaves? To do this, CO2 diffusion within a leaf is examined first. Because affinity of Rubisco for CO2 is low, the carboxylation of ribulose 1,5-bisphosphate is competitively inhibited by O2, and the oxygenation of ribulose 1,5-bisphosphate leads to energy-consuming photorespiration, it is essential for C3 plants to maintain the CO2 concentration in the chloroplast as high as possible. Since the internal conductance for CO2 diffusion from the intercellular space to the chloroplast stroma is finite and relatively small, C3 leaves should have sufficient mesophyll surfaces occupied by chloroplasts to secure the area for CO2 dissolution and transport. This explains why sun leaves are thicker. The second approach is mechanistic or 'how-oriented'. Mechanisms are discussed as to how sun leaves become thicker than shade leaves, in particular, the long-distance signal transduction from mature leaves to leaf primordia inducing the periclinal division of the palisade tissue cells. To increase the mesophyll surface area, the leaf can either be thicker or have smaller cells. Issues of cell size are discussed to understand plasticity in leaf thickness.  相似文献   

6.
7.
Important gas exchange characteristics of C4 plants depend on the properties of phophoenolpyruvate carboxylase (PEPC), the enzyme catalysing the primary fixation of CO2 during C4 photosynthesis. In this study, the relationship between intracellular resistance for CO2 fixation (ri) at high photosynthetically active photon flux densities (PPFD) and maximum PEPC activity in vitro (Vpm) was examined in leaves of Zea mays L. The analysis allowed the estimation of the Michaelis constant Kp of the enzyme for CO2 (or the equivalent number for bicarbonate) in vivo. At low PPFD (below 100 mol m-2 s-1) the initial slopes of the curves describing net CO2 uptake rate A as a function of intercellular CO2 concentration ci increased with increasing PPFD. The increase (i. e. a decrease in ri) was interpreted as due to a reversible activation of PEPC by light. Including this assumption into a model of C4 photosynthesis enabled us to reproduce A(ci) response curves measured at low levels of PPFD. Fitting the model to experimental data resulted in values for KI, the PPFD at which PEPC reaches half of its full activation, of about 200 mol m-2 s-1. Similar results were derived from the dependence of ri on PPFD. The analysis of the relationships between ri and Vpm and between ri and PPFD, as well as fitting of the model to gas exchange data all gave rise to estimates for the resistance for CO2 transfer within mesophyll cells that are comparable with those known from C3 plants.  相似文献   

8.
Cuticular membranes (CMs) were isolated from leaves of amphibious and submerged plants and their CO2 resistances were determined as a contribution to establish quantitatively the series of resistances met by CO2 diffusing from bulk water to the chloroplasts of submerged leaves. The isolation was performed enzymatically; permeabilities were determined and converted to resistances. The range of permeance values was 3 to 43 x 10(-6) m s(-1) corresponding to resistance values of 23 to 295 x 10(3) s m(-1), i.e. of the same order of magnitude as boundary layer resistances. The sum of boundary layer, CM, leaf cell and carboxylation resistances could be contained within the total diffusion resistance as determined from the photosynthetic CO2 affinity of the leaf. From the same species, the aerial leaf CM resistance was always higher than the aquatic leaf CM resistance. In a terrestrial plant, the CM resistance to CO2 diffusion was found lower in leaves developed submerged.  相似文献   

9.
The stomatal response to changing leaf-atmospheric vapour pressure gradient (D(l)) is a crucial yet enigmatic process that defines the daily course of leaf gas exchange. Changes in the hydration of epidermal cells are thought to drive this response, mediated by the transpiration rate and hydraulic conductance of the leaf. Here, we examine whether species-specific variation in the sensitivity of leaves to perturbation of D(l) is related to the efficiency of water transport in the leaf (leaf hydraulic conductivity, K(leaf)). We found good correlation between maximum liquid (K(leaf)) and gas phase conductances (g(max)) in leaves, but there was no direct correlation between normalized D(l) sensitivity and K(leaf). The impact of K(leaf) on D(l) sensitivity in our diverse sample of eight species was important only after accounting for the strong relationship between K(leaf) and g(max). Thus, the ratio of g(max)/K(leaf) was strongly correlated with stomatal sensitivity to D(l). This ratio is an index of the degree of hydraulic buffering of the stomata against changes in D(l), and species with high g(max) relative to K(leaf) were the most sensitive to D(l) perturbation. Despite the potentially high adaptive significance of this phenomenon, we found no significant phylogenetic or ecological trend in our species.  相似文献   

10.
Suboptimal nitrogen nutrition, leaf aging, and prior exposure to water stress all increased stomatal closure in excised cotton (Gossypium hirsutum L.) leaves supplied abscisic acid (ABA) through the transpiration stream. The effects of water stress and N stress were partially reversed by simultaneous application of kinetin (N6-furfurylaminopurine) with the ABA, but the effect of leaf aging was not. These enhanced responses to ABA could have resulted either from altered rates of ABA release from symplast to apoplast, or from some post-release effect involving ABA transport to, or detection by, the guard cells. Excised leaves were preloaded with [14C]ABA and subjected to overpressures in a pressure chamber to isolate apoplastic solutes in the exudate. Small quantities of 14C were released into the exudate, with the amount increasing greatly with increasing pressure. Over the range of pressures from 1 to 2.5 MPa, ABA in the exudate contained about 70% of the total 14C, and a compound co-chromatographing with phaseic acid contained over half of the remainder. At a low balancing pressure (1 MPa), release of 14C into the exudate was increased by N stress, prior water stress, and leaf aging. Kinetin did not affect 14C release in leaves of any age, N status, or water status. Distribution of ABA between pools can account in part for the effects of water stress, N stress, and leaf age on stomatal behavior, but in the cases of water stress and N stress there are additional kinetinreversible effects, presumably at the guard cells.Abbreviations and symbols ABA abscisic acid - PA phaseic acid - w water potential  相似文献   

11.
There is a growing interest in accurate and comparable measurements of the CO2 photocompensation point (Γ*), a vital parameter to model leaf photosynthesis. The Γ* is measured as the common intersection of several CO2 response curves, but this method may incorrectly estimate Γ* by using linear fits to extrapolate curvilinear responses and single conductances to convert intercellular photocompensation points (Ci*) to chloroplastic Γ*. To determine the magnitude and minimize the impact of these artefacts on Γ* determinations, we used a combination of meta‐analysis, modelling and original measurements to develop a framework to accurately determine Ci*. Our modelling indicated that the impact of using linear fits could be minimized based on the measurement CO2 range. We also propose a novel method of analysing common intersection measurements using slope–intercept regression. Our modelling indicated that slope–intercept regression is a robust analytical tool that can help determine if a measurement is biased because of multiple internal conductances to CO2. Application of slope–intercept regression to Nicotiana tabacum and Glycine max revealed that multiple conductances likely have little impact to Ci* measurements in these species. These findings present a robust and easy to apply protocol to help resolve key questions concerning CO2 conductance through leaves.  相似文献   

12.
构建一个普适性的植物叶片气孔导度(gs)对CO2浓度响应(gs-Ca)的模型, 对定量研究植物叶片gs对CO2浓度的响应变化尤为必要。该研究运用便携式光合仪(LI-6400)测量了大豆(Glycine max)和小麦(Triticum aestivum)光合作用对CO2的响应曲线(An-Ca), 在比较传统的Michaelis-Menten模型(M-M模型)和叶子飘构建的CO2响应模型拟合大豆和小麦An-Ca效果的基础上, 构建了gs-Ca响应新模型。然后用新构建的模型拟合大豆和小麦的gs-Ca曲线, 并将拟合结果与传统模型的拟合结果, 以及与其对应的观测数据进行比较, 以判断所构建模型是否合理。结果显示: 叶子飘构建的An-Ca模型可较好地拟合大豆和小麦的An-Ca曲线, 确定系数(R2)均高达0.999。M-M模型拟合大豆和小麦的An-Ca曲线时的R2虽然也较高, 但在较高CO2浓度时的拟合曲线偏离观测曲线。因此, 基于叶子飘的An-Ca模型构建gs-Ca模型更为可行。新构建的gs-Ca模型可较好地拟合大豆和小麦的gs-Ca曲线, R2分别为0.995和0.994, 而且还可以直接给出最大气孔导度(gs-max)、最小气孔导度(gs-min), 以及与gs-min相对应的CO2浓度值(Cs-min)。拟合得到大豆和小麦的gs-max分别为0.686和0.481 mol·m-2·s-1, 与其对应的观测值(分别为0.666和0.471 mol·m-2·s-1)之间均不存在显著差异; 同样, 拟合得到的大豆和小麦的gs-min分别为0.271和0.297 mol·m-2·s-1, 与其对应的观测值(分别为0.279和0.293 mol·m-2·s-1)之间也均不存在显著差异; 此外, 新构建的gs-Ca模型给出大豆和小麦的Cs-min值分别为741.45和1 112.43 μmol·mol -1, 与其对应的观测值(732.78和1 200.34 μmol·mol -1)也不存在显著差异。由此可见, 该研究新构建的gs-Ca模型可作为定量研究植物叶片气孔导度对CO2浓度变化的有效数学工具。  相似文献   

13.
14.
Net CO2 exchange rates, stomatal and internal resistances for CO2-transport were followed on fully expanded Witloof chicory leaves (Cichorium intybus L. cv. Foliosum) for several months during vegetative growth. Maximum net CO2 exchange rate (Pmax) stayed high with a sudden drastic drop at the end of the growing season largely due to an increase in internal diffusion resistance. During an analogous growth period the H2O vapour diffusion resistances of leaves for four selections were measured. The adaxial stomatal resistance was always higher than the abaxial one. Stomatal densities calculated for those selections showed higher values at the abaxial leaf side.  相似文献   

15.
普晓妍  王鹏程  李苏  鲁志云  宋钰 《广西植物》2021,41(9):1465-1475
附生植物是热带亚热带森林生态系统中物种多样性极高且极其脆弱敏感的生物类群之一。光照被认为是促进附生植物由陆生类群演化而来并决定其生长和分布的关键因素。然而,由于接近林冠和规范性采样的限制,附生植物与光照的关系仍亟待阐述。为揭示附生植物对光强变化的响应和适应策略,该研究以亚热带常绿阔叶林6种附生植物(林冠层木本:鼠李叶花楸、毛棉杜鹃;林冠层草本:狭瓣贝母兰、毛唇独蒜兰;树干区草本:点花黄精、距药姜)为对象,对其在4个光处理梯度下生长的叶片气孔特征及其可塑性进行了对比分析。结果表明:(1) 2种附生小乔木的气孔面积(SA)、气孔密度(SD)、潜在气孔导度指数(PCI)和表皮细胞密度(ECD)均对光强改变显著响应。2种附生兰科植物的SA最大,而SD最小;附生乔木叶片SD和ECD的光响应趋势与陆生植物更相似,而附生草本则出现种间差异。(2) 6种附生植物的气孔、表皮细胞特性及其表型可塑性,在草本-木本、常绿-落叶植物、林冠-树干区之间,均无明显差别。(3)附生植物气孔特性和表皮细胞平均可塑性指数均低于陆生植物。综上结果表明,亚热带常绿阔叶林中附生植物对于光环境变化的适应性相对较弱。不同的附生植物可以通过不同程度地增加叶片SD和ECD来适应高光强生境,并通过对SD和SA的双重调节以增大潜在光合能力从而应对低光胁迫。  相似文献   

16.
Lateral diffusion of CO(2) was investigated in photosynthesizing leaves with different anatomy by gas exchange and chlorophyll a fluorescence imaging using grease to block stomata. When one-half of the leaf surface of the heterobaric species Helianthus annuus was covered by 4-mm-diameter patches of grease, the response of net CO(2) assimilation rate (A) to intercellular CO(2) concentration (C(i)) indicated that higher ambient CO(2) concentrations (C(a)) caused only limited lateral diffusion into the greased areas. When single 4-mm patches were applied to leaves of heterobaric Phaseolus vulgaris and homobaric Commelina communis, chlorophyll a fluorescence images showed dramatic declines in the quantum efficiency of photosystem II electron transport (measured as F(q)'/F(m)') across the patch, demonstrating that lateral CO(2) diffusion could not support A. The F(q)'/F(m)' values were used to compute images of C(i) across patches, and their dependence on C(a) was assessed. At high C(a), the patch effect was less in C. communis than P. vulgaris. A finite-volume porous-medium model for assimilation rate and lateral CO(2) diffusion was developed to analyze the patch images. The model estimated that the effective lateral CO(2) diffusion coefficients inside C. communis and P. vulgaris leaves were 22% and 12% of that for free air, respectively. We conclude that, in the light, lateral CO(2) diffusion cannot support appreciable photosynthesis over distances of more than approximately 0.3 mm in normal leaves, irrespective of the presence or absence of bundle sheath extensions, because of the CO(2) assimilation by cells along the diffusion pathway.  相似文献   

17.
Low CO2 concentrations open CO2-sensitive stomata whereas elevated CO2 levels close them. This CO2 response is maintained in the dark. To elucidate mechanisms underlying the dark CO2 response we introduced pH- and potential-sensitive dyes into the apoplast of leaves. After mounting excised leaves in a gas-exchange chamber, changes in extracellular proton concentration and transmembrane potential differences as well as transpiration and respiration were simultaneously monitored. Upon an increase in CO2 concentration transient changes in apoplastic pH (occasionally brief acidification, but always followed by alkalinization) and in membrane potential (brief hyperpolarization followed by depolarization) accompanied stomatal closure. Alkalinization and depolarization were also observed when leaves were challenged with abscisic acid or when water flow was interrupted. During stomatal opening in response to CO2-free air the apoplastic pH increased while the membrane potential initially depolarized before it transiently hyperpolarized. To examine whether changes in apoplastic malate concentrations represent a closing signal for stomata, malate was fed into the transpiration stream. Although malate caused apoplastic alkalinization and membrane depolarization reminiscent of the effects observed with CO2 and abscisic acid, this dicarboxylate closed the stomata only partially and less effectively than CO2. Apoplastic alkalinization was also observed and stomata closed partially when KCl was fed to the leaves. Respiration increased on feeding of malate or KCl, or while abscisic acid closed the stomate. From these results we conclude that CO2 signals modulate the activity of plasma-membrane ion channels and of plasmalemma H+-ATPases during changes in stomatal aperture. Responses to potassium malate and KCl are not restricted to guard cells and neighbouring cells.  相似文献   

18.
Leaf water potentials of Phaseolus vulgaris L. plants exposed to a -3.0 bar root medium were reduced to between -7 and -9 bars within 25 min and remained constant for the next several hours. This treatment led to considerable variation between leaves in both abscisic-acid (ABA) content and Rs, although the two were well correlated after a 5-h treatment. There was an apparent 7-fold increase in leaf ABA levels necessary to initiate stomatal closure when plants were exposed to a -3.0 bar treatment, but when plants were exposed to a -5.0 bar stress Rs values increased prior to any detectable rise in ABA levels. To explain these seemingly contradictory results, we suggest that the rate of ABA synthesis in the leaf, rather than the total ABA content, determines the status of the stomatal aperture.Abbreviations ABA abscisic acid - PEG polyethylene glycol - Rs stomatal diffusion resistance of lower leaf surface - leaf water potential  相似文献   

19.
The effects of short-term (minutes) variations of CO2 concentration on mesophyll conductance to CO2 (gm) were evaluated in six different C3 species by simultaneous measurements of gas exchange, chlorophyll fluorescence, online carbon isotope discrimination and a novel curve-fitting method. Depending on the species, gm varied from five- to ninefold, along the range of sub-stomatal CO2 concentrations typically used in photosynthesis CO2-response curves (AN)-Ci curves; where AN is the net photosynthetic flux and Ci is the CO2 concentrations in the sub-stomatal cavity), that is, 50 to 1500 micromol CO2 mol(-1) air. Although the pattern was species-dependent, gm strongly declined at high Ci, where photosynthesis was not limited by CO2, but by regeneration of ribulose-1,5-bisphosphate or triose phosphate utilization. Moreover, these changes on gm were found to be totally independent of the velocity and direction of the Ci changes. The response of gm to Ci resembled that of stomatal conductance (gs), but kinetic experiments suggested that the response of gm was actually faster than that of gs. Transgenic tobacco plants differing in the amounts of aquaporin NtAQP1 showed different slopes of the gm-Ci response, suggesting a possible role for aquaporins in mediating CO2 responsiveness of gm. The importance of these findings is discussed in terms of their effects on parameterization of AN-Ci curves.  相似文献   

20.
Mesophyll conductance to CO2 in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
The close rosette growth form, short petioles and small leaves of Arabidopsis thaliana make measurements with commercial gas exchange cuvettes difficult. This difficulty can be overcome by growing A. thaliana plants in 'ice-cream cone-like' soil pots. This design permitted simultaneous gas exchange and chlorophyll fluorescence measurements from which the first estimates of mesophyll conductance to CO(2) (g(m)) in Arabidopsis were obtained and used to determine photosynthetic limitations during plant ageing from c. 30-45 d. Estimations of g(m) showed maximum values of 0.2 mol CO(2) m(-2) s(-1) bar(-1), lower than expected for a thin-leaved annual species. The parameterization of the response of net photosynthesis (A(N)) to chloroplast CO(2) concentrations (C(c)) yielded estimations of the maximum velocity of carboxylation (V(c,max_Cc)) which were also lower than those reported for other annual species. As A. thaliana plants aged from 30 to 45 d, there was a 40% decline of A(N) that was entirely the result of increased diffusional limitations to CO(2) transfer, with g(m) being the largest. The results suggest that in A. thaliana A(N) is limited by low g(m) and low capacity for carboxylation. Decreased g(m) is the main factor involved in early age-induced photosynthetic decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号