首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
13C NMR of Nephila clavipes major ampullate silk gland.   总被引:1,自引:0,他引:1       下载免费PDF全文
The major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state. To this end, the structure and conformation of major ampullate gland silk fibroin within the glands of the spider N. clavipes were examined by 13C NMR spectroscopy. These results were compared to those from silk protein first drawn from the spinneret and then denatured. The 13C NMR chemical shifts, along with infrared and circular dichroism data, suggest that the silk fibroin in the glands exists in dynamically averaged helical conformations. Furthermore, there is no evidence of proline residues in U-(13)C-D-glucose-labeled silk. This transient prefolded "molten fibril" state may correspond to the silk I form found in Bombyx mori silk. There is no evidence of the final beta-sheet structure in the ampullate gland silk fibroin before final silk processing. However, the conformation of silk in the glands appears to be in a highly metastable state, as plasticization with water produces the beta-sheet structure. Therefore, the ducts connecting the ampullate glands to the spinnerets play a larger role in silk processing than previously thought.  相似文献   

2.
Molecular and material properties of major ampullate silk were studied for the cobweb-building black widow spider Latrodectus hesperus. Material properties were measured by stretching the silk to breaking. The strength was 1.0 +/- 0.2 GPa, and the extensibility was 34 +/- 8%. The secondary structure of the major ampullate silk protein was studied using carbon-13 NMR spectroscopy. Alanine undergoes a transition from a coiled structure in pre-spun silk to a beta sheet structure in post-spun silk. We have also isolated two distinct cDNAs (both about 500 bp) which encode proteins similar to major ampullate spidroin 1 and 2 (MaSp1 and MaSp2). The MaSp1-like silk contains polyalanine runs of 5-10 residues as well as GA and GGX motifs. The MaSp2-like silk contains polyalanine runs of varying length as well as GPG(X)(n) motifs. L. hesperus major ampullate silk is more like major ampullate silk from other species than other L. hesperus silks.  相似文献   

3.
Although many researches have revealed that liquid phase of silk in the ampulla is turning into the polymerized dragline silk fibers as the feedstock passes through the long duct, the exact mechanism has still been not fully understood. Spider's strongest silk fiber, dragline, is mainly produced in the large ampullate glands, the biggest silk gland in the abdomen with a distinctive yellow color. Morphologically, the duct of large ampullate gland is in its unique S‐shape with 2 loops dividing the entire duct into three limbs. In addition, the diameter of the duct showed radical decrease toward the nozzle of the duct. Therefore, it assumed that the duct is playing a significant role in the entire process of silk production allowing great strength. Here, we present some of the fine structural properties of the large ampullate gland duct in Nephila clavata using various visualizations techniques.  相似文献   

4.
Orb weaver spiders use exceptionally complex spinning processes to transform soluble silk proteins into solid fibers with specific functions and mechanical properties. In this study, to understand the nature of this transformation we investigated the structural changes of the soluble silk proteins from the major ampullate gland (web radial threads and spider safety line); flagelliform gland (web sticky spiral threads); minor ampullate gland (web auxiliary spiral threads); and cylindrical gland (egg sac silk). Using circular dichroism, we elucidated (i) the different structures and folds for the various silk proteins; (ii) irreversible temperature-induced transitions of the various silk structures toward beta-sheet-rich final states; and (iii) the role of protein concentration in silk storage and transport. We discuss the implication of these results in the spinning process and a possible mechanism for temperature-induced beta-sheet formation.  相似文献   

5.
The dragline silk of orb-weaving spiders possesses extremely high tensile strength and elasticity. To date, full-length sequences of only two genes encoding major ampullate silk protein (MaSp) in Latrodectus hesperus have been determined. In order to further understand this gene family, we utilized in this study a variety of strategies to isolate full-length MaSp1 and MaSp2 cDNAs in the wasp spider Argiope bruennichi. A. bruennichi MaSp1 and MaSp2 are primarily composed of remarkably homogeneous ensemble repeats containing several complex motifs, and both have highly conserved C-termini and N-termini. Two novel amino acid motifs, GGF and SGR, were found in MaSp1 and MaSp2, respectively. Amino acid composition analysis of silk, luminal contents and predicted sequences indicates that MaSp1 and MaSp2 are two major components of major ampullate glands and that the ratio of MaSp1 to MaSp2 is approximately 3:2 in dragline silk. Furthermore, both the MaSp1:MaSp2 ratio and the conserved termini are closely linked with the production of high quality synthetic fibers. Our results make an important contribution to our understanding of major ampullate silk protein structure and provide a second blueprint for creating new composite silk which mimics natural spider dragline silk.  相似文献   

6.
The ampullate silk gland of the spider, Araneus sericatus, produces the silk fiber for the scaffolding of the web. The fine structure of the various parts of the gland is described. The distal portion of the duct consist of a tube of epithelial cells which appear to secrete a substance which forms the tunica intima of the duct wall. At the proximal end of the duct there is a region of secretory cells. The epithelium of the sac portion contains five morphologically distinct types of granules. The bulk of the synthesis of silk occurs in the tail of the gland, and in this region only a single type of secretory droplet is seen in the epithelium. Protein synthesis can be stimulated by the injection of 1 mg/kg acetylcholine into the body fluids. 10 min after injection, much of the protein stored in the cytoplasm of the epithelial cells has been secreted into the lumen. 20 min after stimulation, the ergastoplasmic sacs form large whorls in the cytoplasm. Protein, similar in electron-opacity to protein found in the lumen, begins to form in that portion of the cytoplasm which is enclosed by the whorls. The limiting membrane of these droplets is formed by ergastoplasmic membranes which lose their ribosomes. No Golgi material has been found in these cells. Protein appears to be manufactured in the cytoplasm of the tail cells in a form which is ready for secretion.  相似文献   

7.
大腹圆蛛主壶腹腺cDNA文库构建和丝蛋白基因筛选   总被引:2,自引:0,他引:2  
首次通过反转录-置换法和使用pUC18质粒成功构建大腹圆蛛(Araneus ventricosus)主壶腹腺(major ampullate gland)cDNA基因文库,并以鸟枪法从中筛选出具有典型重复结构的大腹圆蛛主壶腹丝蛋白cDNA基因AvF1,大小为1744bp,编码区为1572bp,编码氨基酸524个,分子量为42489.55Da,典型的重复结构为(GGP)nGGX。与现有已知的蛛丝蛋白基因中三带金蛛(Argiope trifas-ciata)鞭毛样丝基因(AtfF)有最高的同源性69.3%。大腹圆蛛主壶腹腺cDNA文库的构建和蛛丝蛋白新基因的克隆,为提供大腹圆蛛蛛丝蛋白基因背景和进一步研究蛛丝蛋白奠定了基础。  相似文献   

8.
To understand the spinning process of dragline silk by spiders, the protein conformation before spinning has to be determined. Raman confocal spectromicroscopy has been used to study the conformation of the proteins in situ in the intact abdominal major ampullate gland of Nephila clavipes and Araneus diadematus spiders. The spectra obtained are typical of natively unfolded proteins and are very similar to that of a mixture of recombinant silk proteins. Vibrational circular dichroism reveals that the conformation is composed of random and polyproline II (PPII) segments with some alpha-helices. The alpha-helices seem to be located in the C-terminal part whereas the repetitive sequence is unfolded. The PPII structure can significantly contribute to the efficiency of the spinning process in nature.  相似文献   

9.
The major ampullate fiber of both Nephila clavipes and Argiope aurantia is composed of two different proteins, MaSp1 and MaSp2. Each of these proteins has a highly conserved pattern of silk-associated amino acid motifs. The GPGXX motif is the only source of proline and is unique to MaSp2. On the basis of the percent of proline, Nephila clavipes major ampullate silk was calculated to consist of 19% MaSp2 and 81% MaSp1, while Argiope aurantia was calculated to have a significantly higher MaSp2 content of 59% with MaSp1 comprising the remaining 41%. To investigate the functional implications of the difference in protein composition, major ampullate silk fibers from Nephila clavipes and Argiope aurantia were mechanically tested and compared. Stress-strain curves produced from polynomial regression show that the two significant differences between major ampullate silk fibers from Nephila clavipes and Argiope aurantia are the average peak load stress and Young's modulus, with Argiope higher for both.  相似文献   

10.
The water, K+ and Na+ content of naturally produced major ampullate silk as well as silk mechanically drawn from the spider Argiope aurantia have been compared to that of the major ampullate gland. It is demonstrated that water is extracted by the major ampullate duct and that this process is accompanied by an exchange of K+ for Na+. The significance of these observations is discussed.  相似文献   

11.
The C-termini of Spidroins produced in the major and minor ampullate glands of spiders are highly conserved. Despite this conservation, no corresponding peptides have been identified in the spinning dopes or the silk filaments so far. To prove their presence or absence, polyclonal antibodies derived against fusion proteins containing the conserved C-terminal regions of both Spidroin 1 and 2 from the spider Nephila clavipes were generated. The antibodies reacted with high molecular weight polypeptides of the corresponding gland extracts and solubilized major ampullate filament and in addition to filament cross-sections. This demonstrates the existence of C-terminal specific peptides in the spinning dope and the mature Spidroins. Both the fusion proteins as well as the proteins contained within the gland lumen showed a reduction in their size under reducing conditions indicating the presence of disulfide bonds. Their high conservation and the biochemical data suggest crucial roles the C-termini play in the formation and/or structure of the corresponding silk filaments.  相似文献   

12.
Our observations on whole mounted major ampullate silk glands suggested that the thread is drawn from a hyperbolic die using a pre-orientated lyotropic liquid crystalline feedstock. Polarizing microscopy of the gland''s duct revealed two liquid crystalline optical textures: a curved pattern in the feedstock within the ampulla of the gland and, later in the secretory pathway, the cellular texture previously identified in synthetic nematic liquid crystals. The behaviour of droplet inclusions within the silk feedstock indicated that elongational flow at a low shear rate occurs in the gland''s duct and may be important in producing an axial molecular orientation before the final thread is drawn. Our observations suggested that the structure of the spider''s silk production pathway and the liquid crystalline feedstock are both involved in defining the exceptional mechanical properties of spider dragline silk.  相似文献   

13.
Silk is the most recognizable trait of spiders, and silk use has changed throughout spider evolutionary history. While morphology of the adult silk spigot has been a useful character for systematics, few studies have examined the ontogeny of the spinning apparatus, and none of these included cribellate spiders. Here, we report the first published full ontogeny of the spinning apparatus of a cribellate spider, Tengella perfuga. We found the presence of expected spigots: major ampullate gland and piriform gland spigots on the anterior lateral spinneret, minor ampullate gland and aciniform gland spigots on the posterior median spinneret, and aciniform gland spigots on the posterior lateral spinneret. Females, but not males, possessed cylindrical gland spigots on both the posterior median and lateral spinnerets. Spiderlings did not possess a functioning cribellum until the third instar. The cribellum grew with increasing numbers of spigots, but functionality was lost in adult males. Most intriguingly, second instars possessed a distinct triad of pre‐spigots on the posterior lateral spinneret. From the third instar onward, these structures formed the modified spigot along with two flanking spigots (in females) or formed nubbins (in males). We suggest that the modified spigot serves as the source of axial lines in the cribellate silk produced in T. perfuga. We also compare spigot ontogeny from previous studies of ecribellate spiders. These comparisons warrant further exploration using the recent spider tree of life in a phylogenetic comparative analysis of spigot ontogeny datasets, which could yield evidence for homologous spigots across the Araneomorphae, notably the Araneoidea and the Retrolateral Tibial Apophysis (RTA) clades.  相似文献   

14.
The spinning process of spiders can modulate the mechanical properties of their silk fibers. It is therefore of primary importance to understand what are the key elements of the spider spinning process to develop efficient industrial spinning processes. We have exhaustively investigated the native conformation of major ampullate silk (MaS) proteins by comparing the content of the major ampullate gland of Nephila clavipes, solubilized MaS (SolMaS) fibers and the recombinant proteins rMaSpI and rMaSpII using (1) H solution NMR spectroscopy. The results indicate that the protein secondary structure is basically identical for the recombinant protein rMaSpI, SolMaS proteins, and the proteins in the dope, and corresponds to a disordered protein rich in 3(1) -helices. The data also show that glycine proton chemical shifts of rMaSpI and SolMaS are affected by pH, but that this change is not due to a modification of the secondary structure. Using a combination of NMR and dynamic light scattering, we have found that the spectral alteration of glycine is concomitant to a modification of the hydrodynamical diameter of recombinant and solubilized MaS. This led us to suggest new potential roles for the pH acidification in the spinning process of MaS proteins.  相似文献   

15.
Although spider silk has been studied for a number of years the structures of the proteins involved have yet to be definitely determined. X-ray diffraction and solid-state nuclear magnetic resonance (NMR) were used to study major ampullate (dragline) silk from Nephila clavipes. The silk was studied in its natural state, in the supercontacted state and in the restretched state following supercontraction. The natural silk structure is dominated by β-sheets aligned parallel to the fiber axis. Supercontraction is characterized by randomizing of the orientation of the β-sheet. When the fiber is restretched alignment is regained. However, the same reorientation was observed for wetting of minor ampullate silk which does not supercontract. Thus, the reorientation of β-sheets alone cannot explain the supercontraction in dragline silk. Cocoon silk showed very little β-sheet orientation in the natural state and there were no changes upon wetting. NMR and X-ray diffraction data are consistent with the β-sheets arising from the poly-alanine sequences known to be present in the proteins of major ampullate silk as has been proposed previously. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
The genus Oxytate L. Koch, 1878 comprises a homogeneous group of nocturnal crab spiders that have silk apparatuses even though they do not spin webs to trap prey. We examined the microstructure of the silk spinning apparatus of the green crab spider Oxytate striatipes, using field emission scanning electron microscopy. The silk glands of the spider were classified into three types: ampullate, pyriform and aciniform. The spigots of these three types of silk gland occur in both sexes. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs of minor ampullate glands supply the median spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets (45 pairs in females and 40 pairs in males), and the aciniform glands feed silk into the median (9–12 pairs in females and 7–10 pairs in males) and the posterior (30 pairs in both sexes) spinnerets. The spigot system of O. striatipes is simpler and more primitive than other wandering spiders: even the female spiders possess neither tubuliform glands for cocoon production nor triad spigots for web‐building.  相似文献   

17.
18.
Solid spider dragline silk is well-known for its mechanical properties. Nonetheless a detailed picture of the spinning process is lacking. Here we report NMR studies on the liquid silk within the wide sac of the major ampullate (m.a.) gland from the spider Nephila edulis. The resolution in the NMR spectra is shown to be significantly improved by the application of magic-angle spinning (MAS). From the narrow width of the resonance lines and the chemical shifts observed, it is concluded that the silk protein within the wide sac of the m.a. gland is dynamically disordered throughout the molecule in the sense that each amino acid of a given type senses an identical environment, on average. The NMR data obtained are consistent with an isotropic liquid phase.  相似文献   

19.
Spider dragline silk is renowned as one of the toughest materials of its kind. In nature, spider silks are spun out of aqueous solutions under environmental conditions. This is in contrast to production of most synthetic fibres, where hazardous solvents, high temperatures and pressure are used. In order to identify some of the chemical processes involved in spider silk spinning, we have produced a collection of cDNA sequences from specific regions of Nephila senegalensis major ampullate gland. We examined in detail the sequence and expression of a putative Nephila senegalensis peroxidase gene (NsPox) from our EST collection. NsPox encodes a protein with similarity to Drosophila melanogaster and Aedes aegypti peroxidases. Northern analysis and in situ localisation experiments revealed that NsPox is expressed in major and minor ampullate glands of the spider where the main components of the dragline silk are produced. We suggest that NsPox plays a role in dragline silk fibre formation and/or processing.  相似文献   

20.
Synthesis of protein by the major ampullate silk glands in the barn spider, Araneus cavaticus was stimulated by depleting the storage of silk protein in the ampulla by mechanically pulling fiber from the spigot. After this treatment, fine structural changes of the glandular epithelium during silk production were examined using light and transmission electron microscopes. In the process of rapid production, major secretory silk was synthesized at the tail region via rER of glandular epithelial cells, and was transported into the ampulla region. The mature secretory product in glandular epithelium appears almost spherical vacuoles which were grown up by fusion with the surrounding small vesicles including the secretory silk. Unlike to a typical process of the secretion, the ampullate silk of tail region seems to bypass either concentrating or packaging steps by the Golgi apparatus. However there's no doubt that the Golgi apparatus also play an important role in the secretory process of the ampulla region. After mechanical pulling stimulation, both epithelia of ampulla and tail regions appeared as a thinner layer of columnar cells with less definitive cell membrane. There are few secretory droplets within these cells, thus causing this region to stain much lighter. It is obvious that the cell loses part of its cytoplasm in this process, and disorganization of the secretory product occurs when it is extruded from the cells by a apocrine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号