首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A recent claim that evening primrose flowers adaptively secrete nectar in response to vibrations from hovering bees lacks supporting evidence. The authors fail to demonstrate that bees can access the concealed nectar and that their visits enhance plant fitness. Reanalysis of the authors’ data raises additional concerns about their conclusions.  相似文献   

2.
Question: Is Rhynchostegium megapolitanum an expanding species? Location: Viennese Basin (120‐220 m a.s.1.), Austria. Methods: 121 dry grasslands, were investigated for the occurrence of R. megapolitanum. Nineteen environmental variables at 50 randomly selected sites, species composition at sites with and without R. megapolitanum and the spatial patterns of distribution of the species at the landscape scale were analysed. We compared actual distribution data of three rare species (Didymodon acutus, Pleurochaete squarrosa R. megapolitanum) and a common one (Brachythecium rutabulum) with the distribution obtained by vouchers that were collected between 1860 and 1940 in the investigated area. We calculated a GIS based model pattern and compared it with the actual distribution. Results: R. megapolitanum was detected in 28 of these sites, almost 50 % of its populations produced sporophytes. We found significant differences between sites with and without R. megapolitanum with regard to grassland size, the percentage of silt and of sand in the soil. There were fewer occurrences of historic herbarium vouchers of R. megapolitanum than our current field survey discovered. The GIS based analyses of distribution patterns at the landscape scale showed a clustering of sites in which R. megapolitanum was present or absent. Simulations with a spatially realistic expansion model showed high similarities to the actual distribution of the species. Conclusions: All these analyses suggest that R. megapolitanum has been expanding in the investigated area. A significant increase in temperature and nitrogen deposition within the last hundred years might be the underlying cause for the species' spread.  相似文献   

3.
Establishing whether herb seed endozoochory is accidental or has evolved independently or in combination with other dispersal mechanisms may be valuable in the study of plant–animal interactions, but it remains unexplored for birds. We tested whether an Australian cockatoo, the galah (Eolophus roseicapilla), swallows entire seeds when feeding on other tissues without subsequent seed digestion, thus enhancing seed dispersal (the ‘foliage is the fruit’ hypothesis). Our preliminary sampling provides strong evidence supporting that this seed predator also acts as a legitimate endozoochorous disperser. A large proportion of droppings contained numerous seeds of six herb species of three plant families, surviving gut passage to be dispersed as viable propagules. The wide range in the number of seeds found in combinations with up to five species in particular droppings suggests both simultaneous and sequential passive ingestion without seed digestion and/or focused seed predation and digestion. As expected for inadvertent ingestion and inefficient digestion, our findings suggest that seed number and richness of dispersed plants are associated traits in this particular mutualistic interaction. This relationship can have important implications in community‐wide processes, favouring herbs whose seeds are disseminated in a viable state over those predated or negatively affected by gut transit.  相似文献   

4.
5.
6.
7.
A common, long‐held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential ‘metabolic theory of ecology’) may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body‐size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) – direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of growth, metabolism and food intake in adaptive ways that are responsive to an organism's internal and external conditions. Metabolic rate does not merely dictate growth rate, but is coadjusted with it. Energy and information use are intimately intertwined in living systems: biological signalling pathways both control and respond to the energetic state of an organism. This review also reveals that we have much to learn about the temporal structure of the pace of life. Are its component processes highly integrated and synchronized, or are they loosely connected and often discordant? And what causes the level of coordination that we see? These questions are of great theoretical and practical importance.  相似文献   

8.
Rebuttal to Miller: ‘Accelerated aging’: a primrose path to insight?’   总被引:1,自引:0,他引:1  
Hasty P  Vijg J 《Aging cell》2004,3(2):67-69
  相似文献   

9.
Mitochondria and peroxisomes are essential subcellular organelles in mammals. Despite obvious differences, both organelles display certain morphological and functional similarities. Recent studies have elucidated that these highly dynamic and plastic organelles share components of their division machinery. Mitochondria and peroxisomes are metabolically linked organelles, which are cooperating and cross-talking. This review addresses the dynamics and division of mitochondria and peroxisomes as well as their functional similarities to provide insight as to why these organelles share the fission machinery in evolutionary aspects.  相似文献   

10.
11.
Miller RA 《Aging cell》2004,3(2):47-51
Organism envy afflicts most researchers who work on aging in mice; how frustrating it is to see the worm and fly biologists nail down milestone after milestone, citation after citation! Surely genetic trickery can produce mice that age in a comparable jiffy? Alas, our near‐total ignorance of what times the aging process makes it hard to guess what genes to tweak, if indeed aging can be mimicked a presto. Building a case that a given short‐lived mutant ages quickly is a steep and thorny path, requiring more than just plucking a symptom here and there from a list of things that sometimes go wrong in old people or old mice. The hallmark of aging is that a lot goes wrong more or less at the same time, in 2‐year‐old mice, 10‐year‐old dogs and 70‐year‐old people. Finding ways to damage one or two systems in a 6‐week or 6‐month‐old mouse is not too hard to do, but the implications of such studies for improved understanding of aging per se are at best indirect and at worst imaginary and distracting.  相似文献   

12.
Waters JM 《Molecular ecology》2011,20(21):4388-4394
Phylogeographic and evolutionary research programmes have successfully elucidated compelling genetic signatures of earth history. Particularly influential achievements include the demonstration of postglacial recolonization patterns for high-latitude taxa and phylogenetic demonstration of the 'progression rule' along oceanic island chains such as Hawaii. While both of these major biogeographic patterns clearly rely on rapid dispersal over long distances, their phylogeographic detection also apparently relies on the competitive exclusion of secondary dispersers. Such exclusion could occur either between or within species and might reflect fitness differences between lineages or, alternatively, neutral demographic processes (e.g. 'high-density blocking'). Regardless, such spatial genetic patterns would be rapidly eroded were it not for the failure of subsequent dispersers to contribute genetically to newly colonized populations. In addition to its role in revealing colonization patterns, competitive exclusion may also explain the maintenance of historic phylogeographic disjunctions long after the original physical barriers to dispersal have ceased to exist. Additionally, some of the most persuasive evidence of competitive exclusion comes from studies of anthropogenic extinction, where surviving lineages have subsequently expanded their ranges, apparently benefitting from the demise of their prehistoric sisters. Broadly, these biogeographic paradigms are united by the 'disconnect' between dispersal and colonization success, the latter being heavily influenced by inter- and intraspecific competition. Despite its apparent importance, such exclusion (especially within species) has received virtually no attention in the phylogeographic literature. Future studies should aim to test directly for the role of competitive exclusion in constraining the biogeography of highly dispersive taxa.  相似文献   

13.
14.
15.
The consideration of ‘mutual benefits’ and partner cooperation have long been the accepted standpoint from which to draw inference about the onset, maintenance and breakdown of the coral‐algae endosymbiosis. In this paper, I review recent research into the climate‐induced breakdown of this important symbiosis (namely ‘coral bleaching’) that challenges the validity of this long‐standing belief. Indeed, I introduce a more parsimonious explanation, in which the coral host exerts a ‘controlled parasitism’ over its algal symbionts that is akin to an enforced domestication arrangement. Far from being pathogenic, a range of well‐established cellular processes are reviewed that support the role of the coral host as an active ‘farmer’ of the energy‐rich photoassimilates from its captive symbionts. Importantly, this new paradigm reposes the deleterious bleaching response in terms of an envelope of environmental conditions in which the exploitative and captive measures of the coral host are severely restricted. The ramification of this new paradigm for developing management strategies that may assist the evolution of bleaching resistance in corals is discussed.  相似文献   

16.
1. This is a discussion of the applicability to the phytoplankton of the concepts of ‘plant functional types’ (PFTs) and ‘functional diversity’ (FD), which originated in terrestrial plant ecology. 2. Functional traits driving the performance of phytoplankton species reflect important processes such as growth, sedimentation, grazing losses and nutrient acquisition. 3. This paper presents an objective, mathematical way of assigning PFTs and measuring FD. Ecologists can use this new approach to investigate general hypotheses [e.g. the intermediate disturbance hypothesis (IDH), the insurance hypothesis and synchronicity phenomena] as, for example, in its original formulation the IDH makes its predictions based on FD rather than species diversity.  相似文献   

17.
Keith Porter culminated his stellar career as the founding father of biological electron microscopy by acquiring, in the late 1970s, a high-voltage electron microscope (HVEM). With this magnificent instrument he examined whole-mounts of cultured cells, and perceived within them a structured cytoplasmic matrix he named the "microtrabecular lattice". Over the next decade Porter published a series of studies, together with a team of outstanding young colleagues, which elaborated his broader "microtrabecular concept." This concept posited that microtrabeculae were real physical entities that represented the fundamental organization the cytoplasm, and that they were the physical basis of cytoplasmic motility and of cell-shape determination. The present review presents Porter's original images of microtrabeculae, after conversion to a more interpretable "digital-anaglyph" form, and discusses the rise and fall of the microtrabecular concept. Further, it explains how the HVEM images of microtrabeculae finally came to be considered as an artifact of the preparative methods Porter used to prepare whole cells for HVEM. Still, Keith's "microtrabecular concept" foretold of our current appreciation of the complexity and pervasiveness of the cytoskeleton, which has now been found by more modern methods of EM to actually be the fundamental organizing principle of the cytoplasmic matrix. During the impending eclipse of Porter's microtrabecular concept in the late 1980s, many of Keith's colleagues fondly described the cell as being filled, not with protoplasm, but with "Porterplasm." Despite the fact that Keith's view was clouded by the methods of his time, it would be fitting and apt to retain this name, still today, for the ordered matrix of cytoskeletal macromolecules that exists in the living cell. In the end, the story of what happened to Porter's microtrabecular concept should be an object lesson in scientific hubris that should humble and inform all of us in cell biology, even today--particularly when we begin to think that our most recent methods and observations are achieving "the last word".  相似文献   

18.
Current taxon assignments at the species level are frequently discordant with DNA-based analyses. Recent studies on tiger beetles in the Cicindela hybrida complex identified discordance between mtDNA patterns and the entities currently defined by the taxonomic literature. To test the accuracy of morphologically delimited groups, five named taxa (species) from 24 representative sampling sites across Europe were scored for 41 external morphological characters. Three of the named taxa were 'diagnosable', that is, defined by between one and three characters unique to each group. Newly sequenced ITS1 and existing mitochondrial cox1 markers established 20 and 22 different haplotypes, respectively, but only cox1 produced (four) diagnosable units. Phylogenetic analysis and statistical parsimony networks showed poor congruence of character variation with the taxonomic entities (and each other). Variation in morphological characters was therefore tested directly for association with DNA-based nesting groups at various hierarchical levels using permutational contingency analysis. Significant statistical associations of 11 (of 13 variable) morphological characters were observed with nesting groups from ITS1 and mitochondrial DNA markers, predominantly at the 4-step level. The analysis demonstrates the need for formal tests of congruence with morphological variation at the level of individual characters, a step that is omitted from recent studies of 'integrative taxonomy'. In addition, statistical correlation of particular morphological characters with DNA-based nesting groups can identify the lowest hierarchical level at which various character sets show congruence, as a means to define evolutionarily separated entities supported by diverse data sources.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号