首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bat genomes are characterised by an A-T richness and by a small C-value compared with other mammalian groups. It has been suggested that the small C-value is mainly due to the lack of repetitive DNA sequences. However, little information about repetitive DNA sequences in this mammalian group is available at the molecular level. Here we describe a PstI family of repetitive DNA sequences present in three species of the genus Pteropus. These repetitive sequences are 54.97% G-C rich, organised in tandem and with a unit length of 744 bp. Methylation analysis indicates that some of the CCGG target sites present in these repetitive DNA sequences have methylated cytosines and that there are small differences in the methylation pattern between species. Several features of this family of repetitive sequences suggest that they evolved by concerted evolution.  相似文献   

2.
Fourteen recombinant clones from Zea mays were studied with regard to their composition of unique and repetitive sequences. Southern hybridization experiments were used to classify restriction fragments of the clones into a unique, middle or highly repetitive class of reiteration frequency. All three classes were often found on the same genomic clone. Crosshybridization studies between clones showed that a given repeat might be present on several clones, and thus four families of highly repetitive elements were established. Heteroduplex analysis was used to show the arrangement and size of repeats common between several clones. A short interspersion pattern of unique, middle and highly repetitive DNA was found. The dispersed repetitive elements were 300-1300 bp in length. Analysis of the pattern produced by a given repeat in genomic Southern experiments suggests that some small dispersed repeats may also exist as part of a larger repeating unit elsewhere in the genome.  相似文献   

3.
Genomic DNA contains a wide variety of repetitive sequences. In Escherichia coli, there have been several classes of repetitive sequences reported, some of which cluster as tandem repeats. We propose a novel method for analyzing symbolic sequences by two-dimensional pattern formation with color-coding. We applied this method for searching tandem repeats in the E. coli genome and found approximately 50 repeats with periods longer than 30 bases. The longest repeat has a period of 1267 bases.  相似文献   

4.
5.
We have identified and sequenced two members of a chicken middle repetitive DNA sequence family. By reassociation kinetics, members of this family (termed CRl) are estimated to be present in 1500-7000 copies per chicken haploid genome. The first family member sequenced (CRlUla) is located approximately 2 kb upstream from the previously cloned chicken Ul RNA gene. The second CRl sequence (CRl)Va) is located approximately 12 kb downstream from the 3' end of the chicken ovalbumin gene. The region of homology between these two sequences extends over a region of approximately 160 base pairs. In each case, the 160 base pair region is flanked by imperfect, but homologous, short direct repeats 10-15 base pairs in length. When the CRl sequences are compared with mammalian ubiquitous interspersed repetitive DNA sequences (human Alu and Mouse Bl families), several regions of extensive homology are evident. In addition, the short nucleotide sequence CAGCCTGG which is completely conserved in ubiquitous repetitive sequence families from several mammalian species is also conserved at a homologous position in the chicken sequences. These data imply that at least certain aspects of the sequence and structure of these interspersed repeats must predate the avian-mammalian divergence. It seems that the CRl family may possibly represent an avian counterpart of the mammalian ubiquitous repeats.  相似文献   

6.
7.
8.
A census of protein repeats.   总被引:20,自引:0,他引:20  
In this study, we analyzed all known protein sequences for repeating amino acid segments. Although duplicated sequence segments occur in 14 % of all proteins, eukaryotic proteins are three times more likely to have internal repeats than prokaryotic proteins. After clustering the repetitive sequence segments into families, we find repeats from eukaryotic proteins have little similarity with prokaryotic repeats, suggesting most repeats arose after the prokaryotic and eukaryotic lineages diverged. Consequently, protein classes with the highest incidence of repetitive sequences perform functions unique to eukaryotes. The frequency distribution of the repeating units shows only weak length dependence, implicating recombination rather than duplex melting or DNA hairpin formation as the limiting mechanism underlying repeat formation. The mechanism favors additional repeats once an initial duplication has been incorporated. Finally, we show that repetitive sequences are favored that contain small and relatively water-soluble residues. We propose that error-prone repeat expansion allows repetitive proteins to evolve more quickly than non-repeat-containing proteins.  相似文献   

9.
Repetitive DNA sequences in the bovine corticotropin-beta-lipotropin precursor gene region have been mapped and subjected to nucleotide sequence analysis. Two of the four repetitive DNA segments found are located in the 5'-flanking region, and one each within the intervening sequences. Each repetitive DNA segment contains one to three highly homologous unit sequences with an approximate length of 120 base pairs. All the unit sequences are flanked on the 3' side by tandem repeats. There are about 10(5) copies of the repetitive DNA in the bovine genome. Comparison of the bovine repetitive sequences with those of other mammalian species reveals the presence of a homologous segment of approximately 40 base pairs. This segment and the region preceding it in the bovine repetitive DNA exhibit sequence homology with the region encompassing the origin of DNA replication in papovaviruses.  相似文献   

10.
Analysis of 37 short repetitive elements (SINEs) in rabbit DNA that are known as C repeats has revealed three that contribute functional polyadenylation signals to genes into which they have been inserted. Similar roles have been attributed to particular individual SINEs in rodents and primates before, suggesting that these roles may be common to SINEs in all mammalian orders. Although most SINEs appear to have little influence on the genome individually, the observation that three of 36 rabbit C repeats provide functional sequences suggests a mechanism for the maintenance of SINEs within mammalian genomes.  相似文献   

11.
We describe here a family of foldback transposons found in the genome of the higher eucaryote, the sea urchin Strongylocentrotus purpuratus. Two major classes of TU elements have been identified by analysis of genomic DNA and TU element clones. One class consists of largely similar elements with long terminal inverted repeats (IVRs) containing outer and inner domains and sharing a common middle segment that can undergo deletions. Some of these elements contain insertions. The second class is highly heterogeneous, with many different middle segments nonhomologous to those of the first-class and variable-sized inverted repeats that contain only an outer domain. The middle and insertion segments of both classes carry sequences that also are found unassociated from the inverted repeats at many other genomic locations. We conclude that the TU elements are modular structures composed of inverted repeats plus other sequence domains that are themselves members of different families of dispersed repetitive sequences. Such modular elements may have a role in the dispersion and rearrangement of genomic DNA segments.  相似文献   

12.
We describe an unusual repetitive DNA region located in the 3′ end of the light (L)-strand in the mitochondrial control region of two elephant seal species. The array of tandem repeats shows both VNTR (variable-number tandem repeat) and sequence variation and is absent from 12 compared mammalian species, except for the occurrence in the same location of a distinct repetitive region in rabbit mtDNA and a similar repeat in the harbor seal. The sequence composition and arrangement of the repeats differ considerably between the northern elephant seal (Mirounga angustirostris) and the southern species (M. leonina) despite an estimated divergence time of 1 MY (based on an mtDNA-RNA gene and the nonrepetitive control region). Analysis of repeat sequence relationships within and between species indicate that divergence in sequence and structure of repeats has involved both slippagelike and unequal crossingover processes of turnover, generating very high levels of divergence and heteroplasmy. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

13.
A Source of Small Repeats in Genomic DNA   总被引:4,自引:0,他引:4       下载免费PDF全文
D. Fieldhouse  B. Golding 《Genetics》1991,129(2):563-572
The processes of spontaneous mutation are known to be influenced by neighboring DNA. Imperfect nearby repeats in the neighboring DNA have been observed to mutate to form perfect repeats. The repeats may be either direct or inverted. Such a mutational process should create perfect direct and inverted repeats in intergenic DNA. A larger than expected number of direct repeats has generally been observed in a wide range of species in both coding and noncoding DNA. Simulations are carried out to determine how this process might influence the repetitive structure of genomic DNA. These simulations show that small repeats created by this kind of a mutational process can explain the excess number of repeats in intergenic DNA. The simulations suggest that this mechanism may be a common cause of mutations, including single-base changes. The influences of the distance between imperfect repeats and of their degree of similarity are investigated.  相似文献   

14.
A huge part of the genomes of most Triticeae species is formed by different families of repetitive DNA sequences. In this paper the phylogenetic distribution of two major classes of the repeats, retrotransposons and tandemly organized DNA sequences, are considered and compared with the evolution of gene-rich regions and generally accepted Triticeae phylogenetic relationships. In Hordeum, LTR-containing retrotransposons are dispersed along the chromosomes and are consistent with the existing picture of the phylogeny of Hordeum. Another retrotransposon class, LINEs, have evolved independently from LTR-retrotransposons. Different retrotransposon classes appear to have competed for genome space during the evolution of Hordeum. Another class of repeats, tandemly organized DNA sequences, tends to cluster at the functionally important regions of chromosomes, centromeres and telomeres. The distribution of a number of tandem DNA families in Triticeae is not congruent with generally accepted phylogenetic relationships. While natural selection is the dominant factor determining the structure of genic regions we suggest that the contribution of random events is important in the evolution of repetitive DNA sequences. The interplay of stochastic processes, molecular drive, and selection determines the structure of chromosomal regions, notably at centromeres and telomeres, stabilizing and differentiating species-specific karyotypes. Thus, the evolution of these regions may occur largely independently of the evolution of gene-rich regions.  相似文献   

15.
This paper reports the molecular and cytogenetic characterization of a HindIII family of satellite DNA in the bat species Pipistrellus pipistrellus. This satellite is organized in tandem repeats of 418 bp monomer units, and represents approximately 3% of the whole genome. The consensus sequence from five cloned monomer units has an A-T content of 62.20%. We have found differences in the ladder pattern of bands between two populations of the same species. These differences are probably because of the absence of the target sites for the HindIII enzyme in most monomer units of one population, but not in the other. Fluorescent in situ hybridization (FISH) localized the satellite DNA in the pericentromeric regions of all autosomes and the X chromosome, but it was absent from the Y chromosome. Digestion of genomic DNAs with HpaII and its isoschizomer MspI demonstrated that these repetitive DNA sequences are not methylated. Other bat species were tested for the presence of this repetitive DNA. It was absent in five Vespertilionidae and one Rhinolophidae species, indicating that it could be a species/genus specific, repetitive DNA family.  相似文献   

16.
Zhang P  Li W  Fellers J  Friebe B  Gill BS 《Chromosoma》2004,112(6):288-299
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.Communicated by P.B. Moens  相似文献   

17.
The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (pi = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.  相似文献   

18.
By means of renaturation kinetics of DNA of the three avian species Cairina domestica, Gallus domesticus and Columba livia domestica the following major DNA repetition classes were observed: a very fast reannealing fraction comprising about 15% of the DNA, a fast or intermediate reannealing fraction that makes up 10%, and a slow reannealing fraction of about 70%, which apparently renatures with single copy properties. — Comparing the reassociation behaviour of short (0.3 kb) and long (>2 kb) DNA fragments of duck and chicken it becomes apparent that only 12% (duck) and 28% (chicken) of the single copy DNA are interspersed with repetitive elements on 2 to 3 kb long fragments. The lengths of the repetitive sequences were estimated by optical hyperchromicity measurements, by agarose A-50 chromatography of S1 nuclease resistant duplexes and by electron microscopic measurements of the S1 nuclease resistant duplexes. It was found that in the case of the chicken DNA the single copy sequences alternating with middle repetitive ones are at least 2.3 kb long; the interspersed moderate repeats have a length average of at least 1.5 kb. The sequence length of the moderate repeats in duck DNA is smaller. The results show that the duck and the chicken genomes do not follow the short period interspersion pattern of genome organisation, characteristic of the eucaryotic organisms studied so far.  相似文献   

19.
The rates of evolution of purified long and short repetitive DNA sequences were examined by hybridisation analysis between the DNAs from several species of sea urchins. We find that the rates of nucleotide substitution are very comparable within mutually retained sequences for the two classes of repetitive DNA. The loss of hybridisable sequences between species also occurs at similar rates among both the short and long repetitive DNA sequences. Between species that separated less than 50 million years ago, hybridisable short repetitive sequences are lost all through the spectrum of reiteration frequencies. The long repeats contain a few sequences which are highly conserved within all of the species examined, and which amount to approximately 1% of the total genome. The short repetitive class, on the other hand, does not seem to contain any such highly conserved elements. The long repetitive sequences internally appear to contain short 'units' of reiteration, which may comprise families within the long repetitive class. We find no evidence to indicate that the majority of long and short repetitive sequences evolve by different mechanisms or at different rates.  相似文献   

20.
We have detected three unique apolipoprotein A-IV (apoA-IV) charge isoforms in strains of commensal mice. The cDNA sequences for one representative of each isoform (Mus domestesticus strains C57BL/6J and 129/J and Mus castaneus) revealed a polymorphism within a series of four imperfect repeats encoding the sequence Glu-Gln-Ala/Val-Gln. Insertions or deletions of 12 nucleotides within this repetitive region have given rise to three genotypes characterized by three (129), four (C57BL/6), or five (M. castaneus) copies of the repeat unit. To ascertain the extent of this variation among other species of the Mus genus, we sequenced this region of apoA-IV cDNAs from eight additional M. domesticus inbred strains and from five wild-derived Mus species. All eight additional M. domesticus strains examined had four repeat units, as found in C57BL/6. Among wild-derived mice, however, one species (Mus spretus) had three repeats, two species (Mus cookii and Mus cervicolor) had four repeats, and two species (Mus hortulanus and Mus minutoides) had five repeats. A lack of correlation between the number of repeat units and the phylogeny of Mus species indicates that independent mutations may have occurred throughout the evolution of specific mouse lineages. We suggest that the repetitive nature of the polymorphic sequence may predispose this region to slippage errors during DNA replication, resulting in frequent deletion/insertion mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号