首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern ageing theory is based on the observation that oxidative metabolism causes damage that results in a gradual loss of vitality, leading to senescence and death. If animals can oxidize only a given amount of substrate in a lifetime (i.e. the ‘metabolic time’ is allocated from a fixed budget), then behaviour may be aimed at maximizing benefits per unit of ‘metabolic time’ expended. We analyse the consequences of this view for two types of behaviour that are commonly expressed as rates with respect to clock time. Examples are given of locomotory behaviour in which the animals' preferred speeds are generally interpreted as a result of maximization of energetic efficiency. The same behaviour could be expected if animals were ‘speed maximizers’ with respect to metabolic time. Examples are given of foraging behaviour that is also best predicted on the basis of maximization of energetic efficiency. This makes sense only if energy is allocated from a fixed budget. However, foraging animals not only expend energy but also consume it so energy cannot be considered as being allocated from a fixed budget. The same behaviour could be expected if animals were ‘energy intake rate maximizers’ with respect to metabolic time. This makes sense if metabolic time is allocated from a fixed budget as suggested by ageing theory. The metabolic time concept can provide a crucial link between the optimum intensity of short-term behaviour and its long-term fitness consequences. We discuss the implications of this approach for the modelling of foraging behaviour. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

2.
Senescence is a universal phenomenon in organisms, characterized by increasing mortality and decreasing fecundity with advancing chronological age. Most proximate agents of senescence, such as reactive oxygen species and UV radiation, are thought to operate by causing a gradual build-up of bodily damage. Yet most current evolutionary theories of senescence emphasize the deleterious effects of functioning genes in late life, leaving a gap between proximate and ultimate explanations. Here, we present an evolutionary model of senescence based on reliability theory, in which beneficial genes or gene products gradually get damaged and thereby fail, rather than actively cause harm. Specifically, the model allows organisms to evolve multiple redundant copies of a gene product (or gene) that performs a vital function, assuming that organisms can avoid condition-dependent death so long as at least one copy remains undamaged. We show that organisms with low levels of extrinsic mortality, and high levels of genetic damage, tend to evolve high levels of redundancy, and that mutation-selection balance results in a stable population distribution of the number of redundant elements. In contrast to previous evolutionary models of senescence, the mortality curves that emerge from such populations match empirical senescence patterns in three key respects: they exhibit: (1) an initially low, but rapidly increasing mortality rate at young ages, (2) a plateau in mortality at advanced ages and (3) 'mortality compensation', whereby the height of the mortality plateau is independent of the environmental conditions under which different populations evolved.  相似文献   

3.
Learning to reciprocate socially valued actions, such as cheating and cooperation, marks evolutionary advances in animal intelligence thought unequalled by even colonial microbes known to secure respective individual or group fitness tradeoffs through genetic and epigenetic processes. However, solitary ciliates, unique among microbes for their emulation of simple Hebbian-like learning contingent upon feedback between behavioral output and vibration-activated mechanosensitive Ca2+ channels, might be the best candidates to learn to reciprocate necessary preconjugant touches perceived during complex ‘courtship rituals’. Testing this hypothesis here with mock social trials involving an ambiguous vibration source, the large heterotrich ciliate Spirostomum ambiguum showed it can indeed learn to modify emitted signals about mating fitness to encourage paired reproduction. Ciliates, improving their signaling expertise with each felt vibration, grouped serial escape strategies gesturing opposite ‘courting’ assurances of playing ‘harder to get’ or ‘easier to get’ into separate, topologically invariant computational networks. Stored strategies formed patterns of action or heuristics with which ciliates performed fast, quantum-like distributed modular searches to guide future replies of specific fitness content. Heuristic-guided searches helped initial inferior repliers, ciliates with high initial reproductive costs, learn to sensitize their behavioral output and opportunistically compete with presumptive mating ‘rivals’ advertising higher quality fitness. Whereas, initial superior repliers, ciliates with low initial reproductive costs, learned with the aid of heuristics to habituate their behavioral output and sacrifice net reproductive payoffs to cooperate with presumptive ‘suitors’, a kind of learned altruism only before attributed to animal social intelligences. The present findings confirm that ciliates are highly competent decision makers capable of achieving paired fitness goals through learning.  相似文献   

4.
The ‘Cambrian explosion’ 500 Myr ago saw a relatively sudden proliferation of organism Bauplan and ecosystem niche structure that continues to haunt evolutionary biology. Here, adapting standard methods from information theory and statistical mechanics, we model the phenomenon as a noise-driven phase transition, in the context of deep-time relaxation of current path-dependent evolutionary constraints. The result is analogous to recent suggestions that multiple ‘explosions’ of increasing complexity in the genetic code were driven by rising intensities of available metabolic free energy. In the absence of severe path-dependent lock-in, ‘Cambrian explosions’ are standard features of blind evolutionary process, representing outliers in the ongoing routine of evolutionary punctuated equilibrium.  相似文献   

5.
Summary The increased mortality caused by ageing represents a fitness cost to organisms. This paper develops techniques for determining the proportions of that cost that accrue at each age. A variety of analyses using several different sources of data on human ageing—palaeodemographic life tables and life tables from more recent societies with high mortality rates—all suggest that the fitness cost of ageing was high during most of our evolutionary history, and was largely due to physiological changes occurring early in adult life. These results imply that predictions about the nature of senescence based on evolutionary theory should be tested using data from middle-aged individuals. They also have implications about the relative importances for human evolution of the pleiotropy and mutation-accumulation theories of the evolution of senescence, and for the validity of Gompertz Law' for the shape of the relationship between mortality and age. An analysis of a life table of the African buffalo suggests that the costs of ageing early in adult life are relatively high in at least one non-human species in its natural environment.  相似文献   

6.
Cacopsylla melanoneura is a univoltine psyllid vector of ‘Candidatus Phytoplasma mali’, the etiological agent of apple proliferation (AP), a severe disease in European apple orchards. The influence of ‘Ca. P. mali’ on the fitness of C. melanoneura was studied. In the spring of 2007, male-female pairs of field-collected adults were exposed to ‘Ca. P. mali’-infected or healthy ‘Golden Delicious’ apple shoots. Exposure to these diseased shoots did not affect the life span of the adult psyllids. However, significantly fewer eggs were laid on the diseased shoots. Furthermore, fewer of the eggs that were laid on the infected plants hatched. Data suggest a detrimental effect of AP phytoplasma on the fitness of C. melanoneura.  相似文献   

7.
The now popular ‘selfish gene’ view defines evolutionary fitness at the gene level - in terms of the number of gene copies residing in future generations (or propelled from previous generations). Yet, most current biology textbooks still apply the concept of fitness to the individual, where it is defined more traditionally as the number of descendants residing in future generations. The existing literature remains ambiguous regarding whether one of these concepts is more meaningful than the other, or whether they both represent legitimate, functional definitions of fitness. In support of the latter view, I present a composite perspective that recognizes the gene as evolutionarily ‘selfish’, but also the individual as a ‘selfish vehicle’ for resident genes. Hamilton's rule explains, based on genetic relatedness, why natural selection has favoured behaviours that compel individuals (as ‘donors’ of help) to act for the good of copies of their genes residing in close kin (‘recipients’). I propose however, that natural selection should particularly favour helping behaviours directed at those recipient kin who have the highest relative probability of being the vehicle for a remarkably adaptive newly mutant gene, weighted by the proportion of genes shared with the donor. According to this ‘adaptive-genetic-novelty-rescue’ (AGNR) hypothesis, these favoured vehicles for shared gene copies are more likely to involve direct descendants (e.g. offspring) than other close kin from one's collateral lineage (e.g. siblings), even when the donor (e.g. a father) shares fewer genes with an offspring (e.g. a son) than with a sibling (e.g. a brother).  相似文献   

8.
Here we present a quantitative study on the density, age and viability of the diapausing egg banks of the rotifer species complex Brachionus plicatilis in the sediments of 15 water bodies from Eastern Spain. Sampled ponds, located in coastal and inland areas, varied in salinity and ranged in size, depth and permanence. By identifying ‘hatched’, ‘deteriorated’ and ‘viable’ diapausing eggs in the sediment samples, we estimated production, hatching and deterioration in relation to the habitat properties of each pond. Our results indicate the presence of large numbers of diapausing eggs in the sediments of almost all of the ponds studied (2-115 eggs cm− 2). Inland ponds tended to have higher densities than coastal lagoons. The vertical distribution of eggs in the sediments frequently showed a non-decreasing pattern, which suggested a high among-year variation in egg production. Despite maximum age of eggs of 60-80 years, the median age (3-30 years) suggests that rotifer egg banks are young in the studied ponds. Egg senescence is suggested by the declining abundance of ‘healthy-looking’ eggs with depth. The proportion of ‘deteriorated’ eggs ranged 75-99% suggesting that deterioration rates in the sediments are high and vary among habitats. Hatching and deterioration rates, as estimated from the counts of ‘hatched’, ‘deteriorated’ and ‘healthy-looking’ eggs in the sediments, largely varied among ponds. An association between hatching and deterioration rates is suggested by our data. This is in agreement with the hypothesis that hatching rates of diapausing eggs depended not only on the risks associated with the water column, as initially expected by the general theory on diapause, but they are also related to the incidence of deterioration processes in the sediment.  相似文献   

9.
10.
Evidence for a genetic basis of aging in two wild vertebrate populations   总被引:1,自引:0,他引:1  
Aging, or senescence, defined as a decline in physiological function with age, has long been a focus of research interest for evolutionary biologists. How has natural selection failed to remove genetic effects responsible for such reduced fitness among older individuals? Current evolutionary theory explains this phenomenon by showing that, as a result of the risk of death from environmental causes that individuals experience, the force of selection inevitably weakens with age. This in turn means that genetic mutations having detrimental effects that are only felt late in life might persist in a population. Although widely accepted, this theory rests on the assumption that there is genetic variation for aging in natural systems, or (equivalently), that genotype-by-age interactions (GxA) occur for fitness. To date, empirical support for this assumption has come almost entirely from laboratory studies on invertebrate systems, most notably Drosophila and C. elegans, whereas tests of genetic variation for aging are largely lacking from natural populations. By using data from two wild mammal populations, we perform quantitative genetic analyses of fitness and provide the first evidence for a genetic basis of senescence to come from a study in the natural environment. We find evidence that genetic differences among individuals cause variation in their rates of aging and that additive genetic variance for fitness increases with age, as predicted by the evolutionary theory of senescence.  相似文献   

11.
MfpA from Mycobacterium tuberculosis is a founding member of the pentapeptide repeat class of proteins (PRP) that is believed to confer bacterial resistance to the drug fluoroquinolone by mimicking the size, shape and surface charge of duplex DNA. We show that phenylalanine side chain stacking stabilizes the N-terminus of MfpA's pentapeptide thus extending the DNA mimicry analogy. The Lumry-Eyring model was applied to multiple spectral measures of MfpA denaturation revealing that the MfpA dimer dissociates to monomers which undergo a structural transition that leads to aggregation. MfpA retains high secondary and tertiary structure content under denaturing conditions. Dimerization stabilizes MfpA's pentapeptide repeat fold. The high Arrhenius activation energy of the barrier to aggregate formation rationalizes its stability. The mechanism of MfpA denaturation and refolding is a ‘double funnel’ energy landscape where the ‘native’ and ‘aggregate’ funnels are separated by the high barrier that is not overcome during in vitro refolding.  相似文献   

12.
Extra-chromosomal genetic elements are important drivers of evolutionary transformations and ecological adaptations in prokaryotes with their evolutionary success often depending on their ‘utility’ to the host. Examples are plasmids encoding antibiotic resistance genes, which are known to proliferate in the presence of antibiotics. Plasmids carrying an essential host function are recognized as permanent residents in their host. Essential plasmids have been reported in several taxa where they often encode essential metabolic functions; nonetheless, their evolution remains poorly understood. Here we show that essential genes are rarely encoded on plasmids; evolving essential plasmids in Escherichia coli we further find that acquisition of an essential chromosomal gene by a plasmid can lead to plasmid extinction. A comparative genomics analysis of Escherichia isolates reveals few plasmid-encoded essential genes, yet these are often integrated into plasmid-related functions; an example is the GroEL/GroES chaperonin. Experimental evolution of a chaperonin-encoding plasmid shows that the acquisition of an essential gene reduces plasmid fitness regardless of the stability of plasmid inheritance. Our results suggest that essential plasmid emergence leads to a dose effect caused by gene redundancy. The detrimental effect of essential gene acquisition on plasmid inheritance constitutes a barrier for plasmid-mediated lateral gene transfer and supplies a mechanistic understanding for the rarity of essential genes in extra-chromosomal genetic elements.  相似文献   

13.
Recent large scale studies of senescence in animals and humans have revealed mortality rates that levelled off at advanced ages. These empirical findings are now known to be inconsistent with evolutionary theories of senescence based on the Malthusian parameter as a measure of fitness. This article analyses the incidence of mortality plateaus in terms of directionality theory, a new class of models based on evolutionary entropy as a measure of fitness. We show that the intensity of selection, in the context of directionality theory, is a convex function of age, and we invoke this property to predict that in populations evolving under bounded growth constraints, evolutionarily stable mortality patterns will be described by rates which abate with age at extreme ages. The explanatory power of directionality theory, in contrast with the limitations of the Malthusian model, accords with the claim that evolutionary entropy, rather than the Malthusian parameter, constitutes the operationally valid measure of Darwinian fitness.  相似文献   

14.
Yang F  Du YZ  Wang LP  Cao JM  Yu WW 《Gene》2011,485(1):7-15
The complete mitochondrial genome sequence of Liriomyza sativae Blanchard (15,551 bp) was determined and analyzed in this study. The circular genome contained 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and an A + T-rich region. The initiation codons of COI and ND1 were ‘ATCA’ and ‘GTG’, respectively. ND2 gene used the truncated termination codon ‘T’. All the tRNA genes had the typical cloverleaf secondary structures except for tRNASer(AGN) gene, which was found with the absence of a DHU arm. In addition, a tRNA-like secondary structure (tRNAMet) was found in the A + T-rich region. The great difference was that the length of L. sativae A + T-rich region was 597 bp shorter than that of Liriomyza trifolii (Burgess). Meanwhile, some minor differences such as ‘TATA’ block were also observed in L. sativae in contrast to ‘TACA’ block in L. trifolii. There were also some essential structure elements such as ‘TATA’ block, ‘G(A)nT’ block, poly-T stretch and stem-and-loop structure in the A + T-rich region of L. sativae mitochondrial genome.  相似文献   

15.
Immunogenic profile of certain cancer cell death mechanisms has been transmuted by research published over a period of last few years and this change has been so drastic that a new (sub)class of apoptotic cancer cell death, redefined as ‘immunogenic apoptosis’ has started taking shape. In fact, it has been shown that this chemotherapeutic agent-specific immunogenic cancer cell death modality has the capabilities to induce ‘anticancer vaccine effect’, in vivo. These new trends have given an opportunity to combine tumour cell kill and antitumour immunity within a single paradigm, a sort of ‘holy grail’ of anticancer therapeutics. At the molecular level, it has been shown that the immunological silhouette of these cell death pathways is defined by a set of molecules called ‘damage-associated molecular patterns (DAMPs)’. Various intracellular molecules like calreticulin (CRT), heat-shock proteins (HSPs), high-mobility group box-1 (HMGB1) protein, have been shown to be DAMPs exposed/secreted in a stress agent/factor-and cell death-specific manner. These discoveries have motivated further research into discovery of new DAMPs, new pathways for their exposure/secretion, search for new agents capable of inducing immunogenic cell death and urge to solve currently present problems with this paradigm. We anticipate that this emerging amalgamation of DAMPs, immunogenic cell death and anticancer therapeutics may be the key towards squelching cancer-related mortalities, in near future.  相似文献   

16.
Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) – a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the ‘basis-dependent’ nature of these concepts. We introduce the notion of ‘formal superposition’ and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular ‘decision-making’ and adaptation. We stress that the interpretation of the notion of ‘formal superposition’ should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., ‘Basis-Dependent Selection’, BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the ‘evolvability mechanism’ loophole are also discussed.  相似文献   

17.
Miniature inverted-repeat transposable elements (MITEs) are small and high copy number transposons, related to and mobilized by some class II autonomous elements. New MITE families can be identified by computer-based mining of sequenced genomes. We describe four MITE families related to MtPH transposons mined de novo in the genome of Medicago truncatula, together with one previously described family MITRAV. Different levels of their intra-family sequence diversity and insertion polymorphism indicate that they were active at different evolutionary periods. MetMIT1 and MITRAV families were uniform in sequence and produced highly polymorphic insertion sites in 26 ecotypes representing a M. truncatula core collection. A subset of insertions was present only in the reference genome of A17 ‘Jemalong’, suggesting that the two families might have been active in the course of domestication. In contrast, all investigated insertions of the MetMIT2 family were fixed, showing that it was not active after M. truncatula speciation. MetMIT1 elements were divided into three clusters, i.e. (I) relatively heterogenous copies fixed in the genome of M. truncatula, (II) uniform but also mostly fixed, and (III) uniform and polymorphic among the investigated accessions. It might reflect the evolutionary history of the MetMIT1 family, showing multiple bursts of activity. A number of MetMIT1 and MITRAV insertions were present within 1 kb upstream or downstream the ORF. A high proportion of insertions proximal to coding regions was unique to A17 ‘Jemalong’.  相似文献   

18.
‘Superclones’ are predominant and time-persistent genotypes, exhibiting constant fitness across different environments. However, causes of this ecological success are still unknown. Therefore, we studied the physiological mechanisms that could explain this success, evaluating the effects of wheat chemical defences on detoxification enzymes [cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST), esterases (EST)], standard metabolic rate (SMR), and fitness-related traits [adult body mass and intrinsic rate of increase (rm)] of two ‘superclones’ (Sa1 and Sa2) of the grain aphid, Sitobion avenae. Additionally, we compared ‘superclones’ with a less-frequent genotype (Sa46). Genotypes were reared on three wheat cultivars with different levels of hydroxamic acids (Hx; wheat chemical defences). Detoxification enzymes and SMR did not differ between wheat hosts. However, GST and EST were different between ‘superclones’ and Sa46, while Sa1 showed a higher SMR than Sa2 or Sa46 (p = 0.03). Differences between genotypes were found for rm, which was higher for Sa1 than for Sa2 or Sa46. For all cases, genotype-host interactions were non-significant, except for aphid body mass. In conclusion, ‘superclones’ exhibit a broad host range, flat energetic costs for non-induced detoxification enzymes, and low variation in their reproductive performance on different defended hosts. However, physiological specialization of ‘superclones’ that could explain their ecological success was not evident in this study.  相似文献   

19.
In the nematode Caenorhabditis elegans, loss of function of many genes leads to increases in lifespan, sometimes of a very large magnitude. Could this reflect the occurrence of programmed death that, like apoptosis of cells, promotes fitness? The notion that programmed death evolves as a mechanism to remove worn out, old individuals in order to increase food availability for kin is not supported by classic evolutionary theory for most species. However, it may apply in organisms with colonies of closely related individuals such as C. elegans in which largely clonal populations subsist on spatially limited food patches. Here, we ask whether food competition between nonreproductive adults and their clonal progeny could favor programmed death by using an in silico model of C. elegans. Colony fitness was estimated as yield of dauer larva propagules from a limited food patch. Simulations showed that not only shorter lifespan but also shorter reproductive span and reduced adult feeding rate can increase colony fitness, potentially by reducing futile food consumption. Early adult death was particularly beneficial when adult food consumption rate was high. These results imply that programmed, adaptive death could promote colony fitness in C. elegans through a consumer sacrifice mechanism. Thus, C. elegans lifespan may be limited not by aging in the usual sense but rather by apoptosis‐like programmed death.  相似文献   

20.
In order to broaden the available genetic variation of melon, we developed an ethyl methanesulfonate mutation library in an orange-flesh ‘Charentais’ type melon line that accumulates β-carotene. One mutagenized M2 family segregated for a novel recessive trait, a yellow–orange fruit flesh (‘yofI’). HPLC analysis revealed that ‘yofI’ accumulates pro-lycopene (tetra-cis-lycopene) as its major fruit pigment. The altered carotenoid composition of ‘yofI’ is associated with a significant change of the fruit aroma since cleavage of β-carotene yields different apocarotenoids than the cleavage of pro-lycopene. Normally, pro-lycopene is further isomerized by CRTISO (carotenoid isomerase) to yield all-trans-lycopene, which is further cyclized to β-carotene in melon fruit. Cloning and sequencing of ‘yofI’ CRTISO identified two mRNA sequences which lead to truncated forms of CRTISO. Sequencing of the genomic CRTISO identified an A–T transversion in ‘yofI’ which leads to a premature STOP codon. The early carotenoid pathway genes were up regulated in yofI fruit causing accumulation of other intermediates such as phytoene and ζ-carotene. Total carotenoid levels are only slightly increased in the mutant. Mutants accumulating pro-lycopene have been reported in both tomato and watermelon fruits, however, this is the first report of a non-lycopene accumulating fruit showing this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号