首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the active and passive length-tension relationship of the abdominal expiratory muscles in vitro during electrically stimulated contractions. Studies were performed on isolated strips of transverse abdominis and external oblique muscle from nine adult hamsters with normal lung function. The effect of chronic hyperinflation on the two muscles was assessed in eight hamsters with elastase-induced emphysema. In normal animals the maximal active tension per cross-sectional area (Po) was equal in the two muscles. The absolute muscle fiber length at which Po occurred (Lo) was less for the external oblique than the transverse abdominis and the length-tension curve operated at shorter fiber lengths. However, the change in tension produced by an increase or decrease in muscle length expressed in relative terms (i.e., as %Lo) was greater for the transverse abdominis than the external oblique. Mean total lung capacity of emphysematous animals was 198% of control. Po of the transverse abdominis and external oblique were the same in emphysematous and control animals. However, Lo and the length-tension curve of the transverse abdominis occurred at shorter fiber lengths in emphysematous animals because of a reduction in the number of sarcomeres in series along the fiber. The length-tension curve and the number of sarcomeres in the external oblique was the same in emphysematous and control animals. These results in normal animals indicate that the magnitude of the change in active and passive tension produced by a change in muscle length differs in the transverse abdominis and external oblique. Moreover, chronic hyperinflation of the thorax produced by elastase injection alters the length-tension relationships of some but not all the expiratory muscles.  相似文献   

2.
Contractile properties of old rat muscles: effect of increased use   总被引:1,自引:0,他引:1  
To examine how different kinds of activity affect the composition and contractile properties of aging skeletal muscle, old male rats were strength and swim trained. The mass of weights lifted during the strength training increased by 85 +/- 9% (P less than 0.05), which was accompanied by an increase by 32 +/- 5% (P less than 0.05) of the estimated force developed. The wet muscle weight of the soleus and the plantaris decreased significantly with age. The phenomenon was counteracted but not neutralized by the strength training. Twitch and tetanic tension also decreased significantly with age in both the soleus and plantaris muscle. This was avoided by the strength training. This training also significantly decreased time to peak tension and half-relaxation time of both muscles. The swim training increased the heart-to-body weight ratio by 21 +/- 5% (P less than 0.05) and the endurance of the soleus muscle. Time to peak tension and triosephosphate dehydrogenase activity of the plantaris muscle were strongly correlated (P less than 0.001) with myosin adenosinetriphosphatase activity. The results show that the composition and contractile properties of old skeletal muscle are considerably affected by strength training repeated during a substantial period of old age, whereas swim training only affects the endurance of the skeletal muscle.  相似文献   

3.
We studied the in vitro contractile and fatigue properties of the rat external abdominal oblique (EAO) and costal diaphragm (DIA) muscles during postnatal development. Isometric twitch contraction (CT) and half-relaxation (RT1/2) times were longer in both the EAO and DIA muscles during the early postnatal period and decreased with age. In the first postnatal week, the CT and RT1/2 were longer in the EAO than the DIA muscle. At 14 days of age and thereafter, the CT and RT1/2 were shorter in the EAO than in the DIA muscle. Force-frequency relationships of the EAO and DIA muscles changed during postnatal development such that the relative force (percent maximum) generated at lower frequencies (less than 15 pulses/s) decreased with age. Moreover the relative force generated by the EAO muscle at lower frequencies was greater than that of the DIA muscle during the early postnatal period but less than that of the DIA muscle in adults. The specific force of both the EAO and DIA muscles increased progressively with age. There were no differences in specific force between the EAO and DIA muscles at any age. The fatigability of the EAO and DIA muscles was comparable during the early postnatal period and increased in both muscles with postnatal development. In adults the EAO muscle was more fatigable than the DIA muscle. We conclude that the contractile and fatigue properties of the EAO and DIA muscles undergo significantly different postnatal transitions, which may reflect their functional involvement in sustaining ventilation.  相似文献   

4.
To have some insight into the functional coupling between the parasternal intercostals (PS) and the diaphragm (DPM), we have examined the isometric contractile properties of bundles from canine PS and DPM muscles. Bundles of external (EXT) and internal (INT) interosseous intercostals were studied for comparison. In addition we have related sonometrically measured length of the intercostals in vivo at supine functional residual capacity (FRC) to in vitro optimal force-producing length (Lo). We found that 1) intercostal twitch speed is significantly faster than DPM, thus displacing their relative force-frequency curve to the right of that of the DPM; 2) the ascending limb of the active length-tension curve of all intercostals lies below the DPM curve; i.e., at 85% Lo, PS force is 46% of maximal force (Po), whereas DPM force is still 87% Po; 3) for any given length change beyond Lo, all intercostals generate greater passive tension than the DPM; 4) Po is greater for the intercostals than the DPM; and 5) at supine FRC, both EXT and INT in dogs are nearly operating at Lo, whereas the PS are operating at a length greater than Lo. We conclude that 1) PS produce less force than DPM during breathing efforts involving low- (10-20 Hz) stimulation frequencies, but they generate more force than DPM when high- (greater than 50 Hz) stimulation frequencies are required; and 2) the pressure-generating ability of the PS is better preserved than that of the DPM with increases in lung volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Contractile and endurance properties of geniohyoid and diaphragm muscles   总被引:2,自引:0,他引:2  
Despite the wealth of information about the neural control of pharyngeal dilator muscles, little is known about their intrinsic physiological properties. In the present study the in situ isometric contractility and endurance of a pharyngeal dilator, the geniohyoid muscle, were compared with properties of the diaphragm in 12 anesthetized artificially ventilated cats. The contraction time (means +/- SE) of the geniohyoid (27 +/- 2 ms) was shorter than that of the diaphragm (36 +/- 3 ms; P less than 0.0005), as was the half-relaxation time (29 +/- 2 vs. 45 +/- 4 ms; P less than 0.002). The faster contraction and relaxation of the geniohyoid compared with the diaphragm were appropriately reflected in the shape of the force-frequency curves for the two muscles, with that of the geniohyoid located to the right of the diaphragm force-frequency curve. The endurance properties of the two muscles were assessed using repetitive stimulation at 40 Hz in trains lasting 0.33 s, with one train repeated every second. The ratio of force at the end of 2 min of repetitive stimulation to initial force was 0.67 +/- 0.06 for the geniohyoid and 0.15 +/- 0.03 for the diaphragm (P less than 0.00001). After the repetitive stimulation, the muscle force generated in response to a range of stimulus frequencies was reduced to a greater extent for the diaphragm than for the geniohyoid muscle. These results indicate that the geniohyoid muscle has a faster physiological profile than does the diaphragm yet is relatively resistant to fatigue when driven at high rates.  相似文献   

7.
Effects of starvation and refeeding on elastase-induced emphysema   总被引:1,自引:0,他引:1  
Adult rats received pancreatic elastase (75 U/100 g) intratracheally and were divided into three groups: fed, starved, and refed. Starved rats received one-third of their measured daily food consumption until they lost 40% body weight. The refed group was fed after 40% weight loss. A control group received saline intratracheally. Saline volume-pressure curve was shifted more significantly to the left of the control group in starved than in fed rats and was superimposed in refed and fed groups. Mean linear intercept was larger and alveolar surface area was smaller in starved than in fed rats compared with the control group; both were similar in fed and refed rats. Protein and hydroxyproline content of the lung were higher in fed than in control and in starved groups; after refeeding these returned to the control values. We conclude that starvation aggravates elastase-induced injury and that refeeding results in the complete recovery of the mechanical but only partial recovery of the morphometric changes induced by starvation.  相似文献   

8.
9.
10.
11.
Thioredoxin 1 (TRX1) is a redox (reduction/oxidation)-active protein that scavenges reactive oxygen species. Here we examined whether endogenous or exogenous administration of TRX1 prevented the development and progression of elastase-induced pulmonary emphysema. Mice were treated with intratracheal elastase via microspray on day 0, and were given recombinant human TRX1 (rhTRX1) every other day from days -1 to 21. To determine the effects of TRX1 on the progression of established emphysema, mice were treated intratracheally with elastase on day 0, and rhTRX1 was administered from days 14 to 21. Histopathologic examination was performed on day 21. TRX1-transgenic but not transgene-negative mice demonstrated a decrease in the physiological indicators of elastase-induced emphysema. TRX1 administration from days -1 to 19 significantly decreased the signs of elastase-induced emphysema. Moreover, TRX1 administration beginning 14 days after elastase treatment significantly slowed the progression of emphysema. TRX1 may be of clinical benefit for the treatment of COPD.  相似文献   

12.
13.
Myostatin is a negative regulator of muscle mass. The impact of myostatin deficiency on the contractile properties of healthy muscles has not been determined. We hypothesized that myostatin deficiency would increase the maximum tetanic force (P(o)), but decrease the specific P(o) (sP(o)) of muscles and increase the susceptibility to contraction-induced injury. The in vitro contractile properties of extensor digitorum longus (EDL) and soleus muscles from wild-type (MSTN(+/+)), heterozygous-null (MSTN(+/-)), and homozygous-null (MSTN(-/-)) adult male mice were determined. For EDL muscles, the P(o) of both MSTN(+/-) and MSTN(-/-) mice were greater than the P(o) of MSTN(+/+) mice. For soleus muscles, the P(o) of MSTN(-/-) mice was greater than that of MSTN(+/+) mice. The sP(o) of EDL muscles of MSTN(-/-) mice was less than that of MSTN(+/+) mice. For soleus muscles, however, no difference in sP(o) was observed. Following two lengthening contractions, EDL muscles from MSTN(-/-) mice had a greater force deficit than that of MSTN(+/+) or MSTN(+/-) mice, whereas no differences were observed for the force deficits of soleus muscles. Myostatin-deficient EDL muscles had less hydroxyproline, and myostatin directly increased type I collagen mRNA expression and protein content. The difference in the response of EDL and soleus muscles to myostatin may arise from differences in the levels of a myostatin receptor, activin type IIB. Compared with the soleus, the amount of activin type IIB receptor was approximately twofold greater in EDL muscles. The results support a significant role for myostatin not only in the mass of muscles but also in the contractility and the composition of the extracellular matrix of muscles.  相似文献   

14.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

15.
16.
Despite a wealth of information about the respiratory behavior of pharyngeal dilator muscles such as the genioglossus, sternohyoid, and sternothyroid muscles, little is known about their contractile and endurance properties. Strips of these muscles (as well as of the diaphragm) were surgically removed from anesthetized cats and studied in vitro at 37 degrees C. The isometric contraction times of the muscles were 38 +/- 1, 31 +/- 1, 28 +/- 2, and 35 +/- 1 ms for genioglossus, sternothyroid, sternohyoid, and diaphragm, respectively. Contraction times were significantly longer for the genioglossus than for the sternohyoid and sternothyroid muscles and significantly longer for the diaphragm than for the sternohyoid muscle. Twitch-to-tetanic ratios were largest for the diaphragm and lowest for the sternohyoid muscle, and the force-frequency relationship of the sternohyoid was most rightward positioned and that of the diaphragm was most leftward positioned. During repetitive stimulation, the decrement in force was greatest for the diaphragm and least for the genioglossus muscle, with the force loss of the two hyoid muscles being intermediate in magnitude. The Burke fatigue index was significantly greater for the genioglossus than for the diaphragm, despite similar tension-time indexes during repetitive stimulation. These data indicate heterogeneity among pharyngeal dilator muscles in their contractile and endurance properties, that certain pharyngeal dilator muscle properties differ from diaphragmatic properties, and that pharyngeal muscles have relatively fast contractile kinetics yet reasonable endurance characteristics.  相似文献   

17.
Soleus and EDL muscles of rats were examined following hindlimb unloading. Some of the rats were given beta-GPA, a creatine analog which depletes high-energy phosphates in muscle tissue, in their food. The contractile properties and fatigue resistance of these muscles were studied, with and without incubation in calcium solution. The increased fatigue resistance after beta-GPA feeding was less in calcium-free solution.  相似文献   

18.
off actile differentiation was studied in six foetal muscles exhibiting different contractile characteristics in adult cattle: the Masseter, Diaphragma, Biceps femoris, Longissimus thoracis, Semitendinosus and Cutaneus trunci. These muscles were excised from foetuses aged 60-260 days. Fibre types were identified by immunohistochemistry using three monoclonal antibodies raised against types 1, 2a, 2b (or 2x) and foetal myosin heavy chains. The different myosin isoforms were also separated by electrophoresis, identified by immunoblotting and quantified by ELISA. At least two generations of cells were observed in all the muscles studied. The primary, early differentiated one, gave rise to type II fibres in Cutaneus trunci and type I fibres in all remaining muscles. The secondary generation of cells differentiated later than the first generation of cells. Its pattern of differentiation was more complex in particular from 150 to 210 days. It formed slow fibres in slow adult muscles, fast fibres in fast adult muscles and both types in mixed muscles. Precocity of differentiation was muscle-type dependent and related to muscle function at birth.  相似文献   

19.
20.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号