首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of thyroid hormone and GH in the regulation of hypothalamic GH-releasing hormone (GRH) gene expression in the rat was examined after the induction of thyroid hormone deficiency by thyroidectomy. Thyroidectomy resulted in a time-dependent decrease in hypothalamic GRH content, which was significant by 2 weeks postoperatively, and a reduction in pituitary GH content to 1% of the control level by 4 weeks. In contrast, GRH secretion by incubated hypothalami under both basal and K(+)-stimulated conditions was increased after thyroidectomy. Hypothalamic GRH mRNA levels also exhibited a time-dependent increase, which was significant at 1 week and maximal by 2 weeks after thyroidectomy. Administration of antirat GH serum to thyroidectomized rats resulted in a further increase in GRH mRNA levels. T4 treatment of thyroidectomized rats for 5 days, which also partially restored pituitary GH content, lowered the elevated GRH mRNA levels. However, comparable effects on GRH mRNA levels were observed by rat GH treatment alone. These results suggest that the changes in hypothalamic GRH gene expression after thyroidectomy in the rat are due to the GH deficiency caused by thyroidectomy, rather than a direct effect of thyroid hormone on the hypothalamus, since the changes were reversible by GH alone despite persistent thyroid hormone deficiency. In addition, they further support the role of GH as a physiological negative feedback regulator of GRH gene expression.  相似文献   

2.
Ghrelin, a novel growth-hormone-releasing acylated peptide, was recently isolated from rat stomach by the search of an endogenous ligand to an "orphan" G-protein-coupled-receptor. Ghrelin neuron is present in the arcuate nucleus of rat hypothalamus, but its central effect on growth hormone (GH) release has yet to be clarified. We determined the plasma GH concentration and GH mRNA level in the pituitary in response to central administration of ghrelin. A single intracerebroventricular (ICV) administration of ghrelin to rats increased the plasma GH concentration dose-dependently. A continuous ICV administration of ghrelin via osmotic pump for 12 days increased the plasma GH concentration on day 6, but did not keep the high GH concentration on day 12. The GH mRNA levels in both groups of single and continuous administration of ghrelin were not significantly different from those of controls. A single administration of growth-hormone secretagogue also did not stimulate GH synthesis. Central ghrelin stimulated GH release but did not augment GH synthesis. In addition to gastric ghrelin, hypothalamic ghrelin functions to regulate GH release.  相似文献   

3.
Galanin is a 29 amino acid peptide that was isolated and characterized from porcine intestinal extracts. The presence of galanin-like immunoreactivity in neuronal elements in the hypothalamus and median eminence suggested a role for it in the hypothalamic control of anterior pituitary function. A hypothalamic site of action of galanin to stimulate growth hormone (GH) release is suggested by our observation that doses as low as 50 picomoles when infused into the third cerebroventricle of conscious, unrestrained ovariectomized rats resulted in significantly elevated plasma levels of GH. This effect was specific for GH and was dose-related. The failure of galanin to alter GH release from dispersed, cultured anterior pituitary cells in vitro further suggests that endogenous galanin plays a neuromodulatory role at the level of the median eminence, possibly affecting the release of known GH-releasing and/or inhibiting factors.  相似文献   

4.
The release of growth hormone (GH) from the pituitary gland is primarily inhibited by somatostatin (SRIF) from the hypothalamus via interactions with five types of SRIF receptors (SSTRs). However, the inhibition mechanism of SRIF on GH has not been fully examined. In this study, we repressed the hypothalamic SRIF in young male mice by stereotaxic injection of the lentiviral-shRNA against SRIF to investigate the role of hypothalamic SRIF on hormone secretion in the GH/IGF-1 axis. We found that the reduction of SRIF in hypothalamus was associated with an increase in the protein, but not the mRNA level, of the GH in the pituitary where SSTR 2 and SSTR 5 act importantly. Interestingly, the level of blood circulatory SRIF, GH, IGF-1 and the body weight were not significantly influenced by the downregulation of hypothalamic SRIF. Our findings provide insights into the mechanisms underlying the inhibition of SRIF on GH secretion.  相似文献   

5.
Ran XQ  Li WS  Lin HR 《生理学报》2004,56(5):644-650
研究斜带石斑鱼生长激素分泌及其mRNA表达的调控规律对于性别分化的控制、临床药物的选择,以及石斑鱼的增养殖等均具有重要的理论意义和实践意义。本文应用静态孵育系统,采用放射免疫测定法和化学发光液相杂交实验,研究GnRH和DA对斜带石斑鱼GH分泌、GHmRNA合成的调控作用。100nmol/LsGnRH作用斜带石斑鱼脑垂体碎片1也4h,明显促进GH的释放和GHmRNA的合成,并具有时间依存性;10nmol/L~1μmol/LsGnRH作用1h能明显促进斜带石斑鱼脑垂体释放GH,促进GHmRNA的合成,表现出明显的剂量效应。100nmol/L、1μmol/LmGnRH作用1h以一定的剂量依存方式促进GH的释放、促进GHmRNA的合成,但mGnRH的效应比相应剂量的sGnRH的作用弱。APO为DA受体的非选择性激动剂,不同剂量APO对斜带石斑鱼脑垂体碎片的作用结果显示,10nmol/L-1μmol/L APO以剂量依存方式促进斜带石斑鱼脑垂体碎片释放GH、促进GHmRNA的合成:1μmol/LAPO作用12h以上明显促进GH的释放和GHmRNA的合成,并随时间的延长而增加。与sGnRH对斜带石斑鱼GH释放、GHmRNA合成的作用相比,APO的作用较弱。本文研究结果证实GnRH和DA能促进斜带石斑鱼脑垂体GH释放和GHmRNA合成。  相似文献   

6.
为研究达氏鲟(Acipenser dabryanus)生长激素(Growth Hormone, GH)基因的功能, 合成了达氏鲟垂体SMART cDNA, 克隆得到GH全长cDNA序列。达氏鲟GH全长cDNA序列为1008 bp, 由52 bp的5'端非编码区(Untranslated region, UTR)、编码214个氨基酸的645 bp开放阅读框(Open reading frame, ORF)和311 bp的3'UTR构成。运用GH氨基酸序列构建进化树分析发现, 达氏鲟与两栖类、爬行类和哺乳类的一致性要高于真骨鱼类。实时荧光定量PCR结果表明, 达氏鲟GH mRNA主要在垂体和下丘脑中表达, 且垂体中GH的表达量约为下丘脑的110倍; Western-blot研究结果与qRT-PCR一致, 仅在垂体和下丘脑中检测到生长激素蛋白, 且垂体中GH的表达量远高于下丘脑。免疫荧光定位结果显示, GH主要定位于垂体中部, 下丘脑中也有少量荧光信号; 苏木精-伊红组织切片染色研究表明, GH主要是由嗜酸性的生长激素分泌细胞分泌。研究为深入研究脊椎动物生长激素基因的进化和人工养殖达氏鲟的生长调控提供了基础。    相似文献   

7.
The peptide hormone adropin, encoded by the energy homeostasis-associated (Enho) gene, plays a role in energy homeostasis and the control of vascular function. The aim of this study was to examine the role of adropin in growth hormone (GH) gene expression at the pituitary level in tilapia. As a first step, the antiserum for the tilapia adropin was produced, and its specificity was confirmed by antiserum preabsorption and immunohistochemical staining in the tilapia pituitary. Adropin could be detected immunocytochemically in the proximal pars distalis (PPD) of the tilapia pituitary. In primary cultures of tilapia pituitary cells, tilapia adropin was effective in increasing GH mRNA levels. However, removal of endogenous adropin by immunoneutralization using adropin antiserum inhibited GH gene expression. In parallel experiments, pituitary cells co-treated with ovine pituitary adenylate cyclase activating polypeptide 38 (oPACAP38) and adropin showed a similar increase level compared to those treated with oPACAP38 alone, whereas insulin-like growth factor 1 (IGF1) not only had an inhibitory effect on basal GH mRNA levels, but also could abolish adropin stimulation of GH gene expression. In pituitary cells pretreated with actinomycin D, the half-life of GH mRNA was enhanced by adropin. Taken together, these findings suggest that adropin may serve as a novel local stimulator for GH gene expression in tilapia pituitary.  相似文献   

8.
3,5,3'-Triiodo-L-thyronine (T3) regulates the growth rate and GH production of cultured GC cells, a rat pituitary tumor cell line. We have previously demonstrated a parallel increase in cellular content of DNA and nuclear T3 and glucocorticoid receptors during the DNA synthesis (S) phase of the GC cell growth cycle. To determine the relationship between the increase in nuclear hormone receptors and GH production in S-phase cultures, we measured the synthesis rate of GH by pulse-labeling with [3H]leucine and immunoprecipitation as well as the relative concentration of GH mRNA by dot hybridization employing formaldehyde-treated cytoplasm and GH cDNA. Total protein synthesis was similar in S-phase and asynchronous cultures. However, in comparison to asynchronous cultures, S-phase cells had an increased GH synthesis rate, p less than 0.005 (from 13,430 +/- 609 to 19,150 +/- 1160 cpm/10(6) cells/2 h) and increased GH mRNA, p less than 0.001 (from 7.2 +/- 1.2 to 14.5 +/- 1.5 relative A units). The S-phase-associated augmentation in GH production did not appear to result from a decrease in ADP-ribosylation induced by 2 mM thymidine treatment which was utilized for the S-phase synchronization. To determine whether increased GH mRNA and GH synthesis in S-phase was associated with an increase in synthesis of GH mRNA, we measured the incorporation of [3H]uridine into GH mRNA by incubating partially synchronized S-phase cells with [3H]uridine and isolating 3H-labeled GH mRNA by hybridization to GH cDNA immobilized on nitrocellulose filters. Total RNA synthesis was similar in asynchronous, S-phase and G1 cell populations. However, the mean incorporation of [3H]uridine into GH mRNA of S-phase cultures was decreased to 52, 59, and 61% (counts/min of GH mRNA/10(6) cells), 49, 59, and 65% (ppm of total RNA), and 64 and 69% (ppm of poly(A)+ RNA) of asynchronous cultures. Our studies show further that the decrease in [3H]uridine incorporation into GH mRNA did not result from a cell cycle specific change in efficiency of hybridization or exclusively to an S-phase associated increased rate of degradation of GH mRNA. Thus, despite increased nuclear T3 and glucocorticoid receptors and, increased GH mRNA and GH synthesis, the synthesis rate of GH mRNA appears decreased in S-phase GC cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Expression of human growth hormone (hGH) was targeted to growth hormone-releasing (GRF) neurons in the hypothalamus of transgenic rats. This induced dominant dwarfism by local feedback inhibition of GRF. One line, bearing a single copy of a GRF-hGH transgene, has been characterized in detail, and has been termed Tgr (for Transgenic growth-retarded). hGH was detected by immunocytochemistry in the brain, restricted to the median eminence of the hypothalamus. Low levels were also detected in the anterior pituitary gland by radioimmunoassay. Transgene expression in these sites was confirmed by RT-PCR. Tgr rats had reduced hypothalamic GRF and mRNA, in contrast to the increased GRF expression which accompanies GH deficiency in other dwarf rats. Endogenous GH mRNA, GH content, pituitary size and somatotroph cell number were also reduced significantly in Tgr rats. Pituitary adrenocorticotrophic hormone (ACTH) and thyroid-stimulating hormone (TSH) levels were normal, but prolactin content, mRNA levels and lactotroph cell numbers were also slightly reduced, probably due to feedback inhibition of prolactin by the lactogenic properties of the hGH transgene. This is the first dominant dwarf rat strain to be reported and will provide a valuable model for evaluating the effects of transgene expression on endogenous GH secretion, as well as the use of GH secretagogues for the treatment of dwarfism.  相似文献   

10.
Gonadotropin-releasing hormone (GnRH) is produced by the hypothalamus and stimulates the synthesis and secretion of gonadotropin hormones. In addition, GnRH also stimulates the production and secretion of growth hormone (GH) in some fish species and in humans with certain clinical disorders. In the goldfish pituitary, GH secretion and gene expression are regulated by two endogenous forms of GnRH known as salmon GnRH and chicken GnRH-II. It is well established that PKC mediates GnRH-stimulated GH secretion in the goldfish pituitary. In contrast, the signal transduction of GnRH-induced GH gene expression has not been elucidated in any model system. In this study, we demonstrate, for the first time, the presence of novel and atypical PKC isoforms in the pituitary of a fish. Moreover, our results indicate that conventional PKC alpha is present selectively in GH-producing cells. Treatment of primary cultures of dispersed goldfish pituitary cells with PKC activators (phorbol ester or diacylglycerol analog) did not affect basal or GnRH-induced GH mRNA levels, and two different inhibitors of PKC (calphostin C and GF109203X) did not reduce the effects of GnRH on GH gene expression. Together, these results suggest that, in contrast to secretion, conventional and novel PKCs are not involved in GnRH-stimulated increases in GH mRNA levels in the goldfish pituitary. Instead, PD98059 inhibited GnRH-induced GH gene expression, suggesting that the ERK signaling pathway is involved. The results presented here provide novel insights into the functional specificity of GnRH-induced signaling and the regulation of GH gene expression.  相似文献   

11.
The neuroendocrine sequelae of acute or chronic superior cervical ganglionectomy in control or pituitary-grafted rats were studied by analyzing both plasma prolactin, growth hormone (GH) and ACTH levels, and taurine (TAU) content in the hypophysiotropic area of the hypothalamus or the median eminence. As expected, after either acute or chronic ganglionectomy, norepinephrine (NE) content decreased in the brain areas studied, although the values remained higher in hyperprolactinemic rats. TAU content was differentially modified by acute vs. chronic surgeries, thus indicating the possible existence of hypothalamic interactions between TAU and NE to regulate pituitary hormone secretion. Indeed, associated differential changes in plasma prolactin, GH and ACTH levels may be due to the observed TAU changes. As expected, pituitary grafting increased plasma prolactin, GH and ACTH levels, so that the presence of a pituitary graft differentially interferes with the effects of either surgery not only on TAU content but also on the plasma levels of the hormone studied. Globally, ongoing studies confirm the differential effects of acute and chronic superior cervical ganglionectomy on plasma prolactin, GH and ACTH levels, and provide new evidence about its effects on TAU content in the hypophysiotropic area of the hypothalamus and the median eminence that may partially explain the changes observed in the pituitary hormones studied.  相似文献   

12.
13.
Hypothalamic control of thymic function.   总被引:3,自引:0,他引:3  
Removal of the pituitary gland results in atrophy of the thymus. As the former is under the control of hypothalamus, destruction of anterior portion of the hypothalamus (AHTL) would be expected to negatively influence the thymic function. Contrary to our expectation, however, the thymus became hypertrophic and serum level of growth hormone (GH) markedly increased, when the anterior portion of the hypothalamus was destroyed in rats at 1 month of age and older. The results suggested that AHTL removed the cells secreting GHRIH (growth hormone release inhibitory hormone), but not GHRH (growth hormone releasing hormone), leading to increased pituitary secretion of GH. This high serum level of GH appeared to be responsible for the thymic hyperplasia occurring after AHTL. In other words, the development and aging of the thymus appear to be dependent on the serum level of GH which is under the balance of positive (GHRH) and negative (GHRIH) signals from the hypothalamus. In rats and mice, the serum level of GH is very high just after birth, quickly declines in young adults and does not change greatly thereafter. Thus, it is likely that the initial positive signal is high just after birth and decreasing thereafter with a concomitant increase of negative signal, leading to the onset ofthymic atrophy at around puberty, in association with sex steroid release.  相似文献   

14.
15.
16.
This study was undertaken to analyze if the effects of subchronic alternating cadmium exposure on pituitary hormone secretion are mediated by changes in dopamine turnover in an age dependent way or are directly correlated to cadmium accumulation at the hypothalamic-pituitary axis. Male rats were treated sc. from day 30 to 60 (prepubertal period) or from day 60 to 90 (adult age) of life, with cadmium chloride (CdCl2) at a dose of 0.5 and 1.0 mg kg–1 bw, every 4th day in an alternate schedule, starting with the smaller dose. Dopamine (DA) turnover, expressed as the ratio of acid 3,3-dihidroxifenil acetic (DOPAC)/DA in various hypothalamic areas, the plasma levels of prolactin, growth hormone (GH) and adrenocorticotropic hormone (ACTH), and cadmium accumulation in the hypothalamus and pituitary were studied. Prepubertal cadmium exposure decreased DA content in all hypothalamic areas studied, although its turnover was not modified. A decrease in plasma ACTH levels with no changes in plasma prolactin and GH levels were found. Cadmium did not accumulate in pituitary while it increased in the hypothalamus. Metal exposure during adulthood decreased DA content in mediobasal and posterior hypothalamus, and its turnover in posterior hypothalamus and median eminence. It decreased plasma prolactin and ACTH levels but not those of GH. Cadmium concentration increased in both hypothalamus and pituitary. These results suggest that cadmium exposure produces age dependent changes on the secretory mechanisms of the pituitary hormones studied, related to the selective accumulation of the metal at both hypothalamic and hypophyseal level changes. However the effects of the metal are not mediated by dopamine.  相似文献   

17.
At the University of Missouri-Kansas City, School of Dentistry, the effect of mestranol and/or norethynodrel on growth hormone (GH) was studied with an anterior pituitary gland (AP) donor-recipient technique in rats. Experimental donor rats received, per 100 g of body weight, subcutoneous injections of 50 mcg of mestranol (16 rats), 1250 mcg of norethynodrel (18), or their combination (23) on Monday, Wednesday, and Friday for 10 weeks. 12 control donor rats received vehicle alone. P values greater than .05 were considered significant. Mean final body weight, body weight gain, and absolute AP weight of the 3 steroid-treated donor groups were significantly less than the control values. Body sizes in the 3 donor groups were markedly smaller than in the control group. The effect of donor AP given in ip injections to hypophysectomized recipient rats was studied by measurement of the tibial epiphyseal cartilage width. Judged in this indirect manner, total GH in the AP was seen to be significantly decreased by all 3 steroid treatments but still present in moderate amounts. The treatments may have, directly or indirectly through the hypothalamus, inhibited pituitary GH synthesis and release, or the decreased total GH in the AP may have been due simply to the significant decrease in gland size. The estrogenic activities of mestranol and norethynodrel may have been responsible for an inhibition of GH synthesis. On the other hand, the steroids may have stimulated GH release from the AP as is the case in humans but concurrently exerted antagonistic action on GH at the level of peripheral tissues.  相似文献   

18.
Arginine stimulates growth hormone (GH) secretion, possibly by inhibiting hypothalamic somatostatin (SS) release. Insulin-like growth factor I (IGF-I) inhibits GH secretion via effects at the pituitary and/or hypothalamus. We hypothesized that if the dominant action of IGF-I is to suppress GH release at the level of the pituitary, then the arginine-induced net increase in GH concentration would be unaffected by an IGF-I infusion. Eight healthy young adults (3 women, 5 men) were studied on day 2 of a 47-h fast for 12 h (35th-47th h) on four occasions. Saline (Sal) or 10 microg. kg(-1). h(-1) recombinant human IGF-I was infused intravenously for 5 h from 37 to 42 h of the 47-h fast. Arginine (Arg) (30 g iv) or Sal was infused over 30 min during the IGF-I or Sal infusion from 40 to 40.5 h of the fast. Subjects received the following combinations of treatments in random order: 1) Sal + Sal; 2) Sal + Arg; 3) IGF-I + Sal; 4) IGF-I + Arg. Peak GH concentration on the IGF-I + Arg day was ~45% of that on the Sal + Arg day. The effect of arginine on net GH release was calculated as [(Sal + Arg) - (Sal + Sal)] - [(IGF-I + Arg) - (IGF-I + Sal)]. There was no significant effect of IGF-I on net arginine-induced GH release over control conditions. These findings suggest that the negative feedback effect of IGF-I on GH secretion is primarily mediated at the pituitary level and/or at the hypothalamus through a mechanism different from the stimulatory effect of arginine.  相似文献   

19.
Vasoactive intestinal peptide (VIP) has been implicated in the regulation of avian reproductive activity and appears to act at the level of the hypothalamus and pituitary. This in situ hybridization histochemistry study describes the distribution of VIP receptor mRNA expression in the hypothalamus and the pituitary of reproductively active (laying) and quiescent (nonphotostimulated, incubating, and photorefractory) female turkeys and characterizes the differences observed in VIP receptor gene expression. VIP receptor mRNA, while expressed throughout the hypothalamus, was specifically expressed in areas known to contain GnRH-I neurons in the chicken, i.e., the lateral septum, medial preoptic area, anterior hypothalamus, and paraventricular nucleus. Significant differences in VIP receptor mRNA expression between different reproductive states was observed only within the infundibular nuclear complex. VIP receptor mRNA was markedly less in nonphotostimulated and photorefractory hens as compared with laying and incubating hens. The most dense VIP receptor mRNA was found in the anterior pituitary, where it was 2.4- and 3.0-fold greater in laying and incubating hens, respectively, as compared with that in nonphotostimulated ones. Hens that stopped incubating and became photorefractory displayed pituitary VIP receptor mRNA levels similar to those of nonphotostimulated birds. The changes in pituitary VIP receptor mRNA expression were positively correlated with known changes in pituitary prolactin (PRL) mRNA expression and PRL content and release. These findings indicate that the variations in PRL secretion observed across the turkey reproductive cycle are, in part, regulated by changes in VIP receptors at the pituitary level.  相似文献   

20.
In order to study the existence of possible interrelation-ships between prolactin (PRL) and growth hormone (GH) secretions, adult male rats bearing an anterior pituitary graft under the kidney capsule since day 90 of life and their sham-operated controls were submitted to a single i.p. administration of L-dopa (50 mg/kg weight) or saline 30 days after the operation. Plasma PRL and GH levels were measured by using specific RIA methods. Dopamine (DA) and norepinephrine (NE) contents in the hypothalamus and in the in situ anterior pituitary gland were measured by using a specific radioenzymatic assay. An increase in plasma PRL levels and a decrease in plasma GH levels were shown in grafted rats. Hypothalamic contents of DA and NE were increased in these animals, while the anterior pituitary content of DA was not modified as compared to controls. The administration of a single injection of L-dopa led to decreases of plasma PRL and GH levels in both grafted and control rats, but while marked increases in hypothalamic and anterior pituitary contents of DA were shown in both groups, the hypothalamic content of NE was only increased in control animals. These data suggest that PRL and GH secretions were closely related. Dopamine could be mediating the action of PRL on GH, while NE would be less involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号