首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear factor-kappaB regulates genes that control immune and inflammatory responses and are involved in the pathogenesis of several diseases, including AIDS and cancer. It has been proposed that reactive oxygen intermediates participate in NF-kappaB activation pathways, and compounds with putative antioxidant activity such as N-acetyl-L-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC) have been used interchangeably to demonstrate this point. We examined their effects, separately and combined, on different stages of the NF-kappaB activation pathway, in primary and in transformed T cells. We show that NAC, contrary to its reported role as an NF-kappaB inhibitor, can actually enhance rather than inhibit IkappaB degradation and, most importantly, show that in all cases NAC exerts a dominant antagonistic effect on PDTC-mediated NF-kappaB inhibition. This was observed at the level of IkappaB degradation, NF-kappaB DNA binding, and HIV-LTR-driven reporter gene expression. NAC also counteracted growth arrest and apoptosis induced by dithiocarbamates. Antagonistic effects were further observed at the level of jun-NH2-terminal kinase, p38 and ATF-2 activation. Our findings argue against the widely accepted assumption that NAC inhibits all NF-kappaB activation pathways and shows that two compounds, previously thought to function through a common inhibitory mechanism, can also have antagonistic effects.  相似文献   

2.
Acute myeloid leukemia (AML) is a malignant clonal hematopoietic disease, which is caused by hematopoietic stem cell abnormalities. Epigenetic regulation, especially of microRNAs (miRNAs), mostly results from external or environmental effects and is critical to AML. In this study, for the first time, we report that decreased expression of miR-345-5p facilitates the proliferation of leukemia cells in AML. Further study demonstrated that AKT1/2 was the target of miR-345-5p and was responsible for the dysregulation of leukemia cell proliferation and apoptosis. Inhibition of AKT1/2 ameliorated this malignant effect, which provides new insight into AML diagnosis, treatment, prognosis, and next-step translational investigations.  相似文献   

3.
The intracellular bacterium Listeria monocytogenes infects dendritic cells (DC) and other APCs and induces potent cell-mediated protective immunity. However, heat-killed bacteria fail to do so. This study explored whether DC differentially respond to live and killed Listeria and how this affects T cell activation. To control for bacterial number, a replication-deficient strain, Lmdd, defective in D-alanine biosynthesis, was used. We found that DC internalize both live and heat-killed Lmdd and similarly up-regulate the expression of costimulatory molecules, a necessary step for T cell activation. However, only live Lmdd-infected DC stimulate T cells to express the early activation marker CD69 and enhance T cell activation upon TCR engagement. Infection with live, but not heat-killed, Lmdd induces myeloid DC to secrete copious amounts of IFN-beta, which requires bacterial cytosolic invasion. Exposure to high concentrations of IFN-beta sensitizes naive T cells for Ag-dependent activation.  相似文献   

4.
5.
It has been proposed that eukaryotic nuclear factor nuclear factor kappa-B (NF-kappaB) and cyclooxygenase-2 (COX-2) are implicated in the pathogenesis of many human diseases including cancer. Arsenic has been widely used in medicine in Oriental countries. Recent studies have shown that arsenic trioxide (As(2)O(3)) could induce in vitro growth inhibition and apoptosis of malignant lymphocytes, and myeloma cells. However, the molecular mechanisms by which As(2)O(3) initiates cellular signaling toward cell death are still unclear. In the present study, the effects of As(2)O(3) on NF-kappaB and COX-2 expression in HL-60 cells were investigated. As(2)O(3) suppressed DNA-binding activity of NF-kappaB composed of p65/p50 heterodimer through preventing the degradation of IkappaB-alpha and the nuclear translocation of p65 subsequently as well as interrupting the binding of NF-kappaB with their consensus sequences. Inhibitory effect of As(2)O(3) on NF-kappaB DNA activity was dependent upon intracellular glutathione (GSH) and H(2)O(2) level, but not superoxide anion. Futhermore, we found that As(2)O(3) also downregulated the expression of COX-2, which has NF-kappaB binding site on its promoter through repressing the NF-kappaB DNA-binding activity.  相似文献   

6.
7.
Adoptive immunotherapy with donor T lymphocytes may be used as a treatment for relapsed leukemia after allogeneic hematopoietic stem cell transplantation (SCT). In vitro selected and expanded anti-leukemic T cells may be more effective in inducing a response in vivo. To identify the anti-leukemic reactivity of in vitro generated T cells, standard target cell read-out assays like the 51Cr-release assay are not always appropriate. We developed an assay in which the ability of T cells to antigen specifically inhibit the in vitro growth of leukemic progenitor cells in the presence of cytokines can be measured. This assay allows the evaluation of the cytolytic or suppressive potential of leukemia reactive T cells for prolonged periods of time. The assay is based on inhibition of [3H]thymidine incorporation by the leukemic progenitor cells induced by multiple hematopoietic growth factors. T cell clones with a known specificity were used to compare the analytic potential of the new assay with those of other cytotoxicity assays. Based on the results of the T cell clones, a modification of a limiting dilution assay was developed to identify anti-leukemic allogeneic T cells in HLA identical donor-recipient combinations selected on their ability to inhibit the in vitro growth of CML or AML progenitor cells, to be used for the generation of leukemia-reactive CTL lines for clinical use.  相似文献   

8.
The activation requirements of alloreactive and antigen reactive murine T cells were examined by stimulating class II restricted T cell clones with monoclonal B lymphoma cells. One B lymphoma cell line (T27A) was found to stimulate IL 2 release from some alloreactive T cell clones without stimulating any significant T cell proliferation response. The same B lymphoma cells are capable of stimulating IL 2 release and proliferative responses from other T cell clones. Evidence is presented suggesting that B lymphoma cell stimulation of these T cell clones is largely IL 1 independent and that at least some T cell clones may require activation signals other than Ia, antigen, and IL 1. The addition of exogenous, purified IL 1 to the T cell activation assays was found to have a wide range of stimulatory effects on the proliferative responses of different T cell clones. The absence of comparable IL 1-induced stimulation of IL 2 secretion suggests that IL 1 primarily enhances antigen specific T cell proliferation through mechanisms other than acting as a co-stimulant for IL 2 release.  相似文献   

9.
10.
The increase in affinity and heterogeneity of antibody with respect to time after immunization to the 2,4,6-trinitrophenyl (TNP) determinant was studied using TNP-brucella (BA) and TNP-type III pneumococcal polysaccharide (SIII). Experimental evidence is presented in support of the maturation of 19S antibody affinity. The difficulties which have been encountered in some previous investigations in detecting such a maturation appear to be the tendency of the cells to switch from IgM to IgG synthesis early after the peak of the primary response. Data are presented indicating that this switch occurs in a non-antibody-secreting memory cell population prior to, or more likely very shortly after, boosting. We also present evidence that the use of an antigen that does not induce a massive switch from IgM to IgG antibody synthesis offers a way of unmasking maturation of the 19S response. Thus, with the T-independent antigen TNP-SIII, a definite increase in heterogeneity could be detected in the 19S response upon secondary boosting. A greater increase in heterogeneity was noted in nude mice and was possibly due to the absence of suppressor T cells.  相似文献   

11.
Epidemiological evidence has associated exposure to arsenic (As) in drinking water with an increased incidence of human cancers in the skin, bladder, liver, kidney and lung. Sodium arsenite mimics the effects of estradiol and induces cell proliferation in the estrogen responsive breast cancer cell line MCF-7. Therefore, our aim was to further explore the ability of sodium arsenite to induce MCF-7 epithelial breast cell proliferation and some of its underlying mechanisms by studying ROS production, c-Myc and HO-1 protein levels, 8-OHdG formation and NF-kappaB activation. Low arsenite concentrations (0.5-5 microM) induced ROS production and ROS-related depolarization of the mitochondrial membrane suggesting that mitochondria played an important role in the oxidative effects of As. ROS-mediated DNA damage as measured by the presence of 8-OHdG DNA-adducts in their nuclei, IkappaB phosphorylation, NF-kappaB activation and increases in c-Myc and HO-1 protein levels were also observed, suggesting that these factors play a relevant role in the arsenite induced MCF-7 cell recruitment into the S-phase of the cell cycle and cell proliferation observed. In conclusion, arsenite activates several pathways involved in MCF-7 cell proliferation suggesting that arsenite exposure may pose a risk for breast cancer in human exposed populations notwithstanding that most studies to date have not yet implicated this metalloid as a cofactor in the etiology of this disease.  相似文献   

12.
The receptor for activated C kinase 1 (RACK1), an adaptor protein implicated in the regulation of multiple signaling pathways, has been reported to contribute to the survival of leukemic progenitor cells by enhancing the activity of glycogen synthase kinase 3β (GSK3β). However, it remains unknown whether RACK1 also contributes to the oncogenic growth of acute myeloid leukemia (AML) cells. Here, we report that transient or stable silencing of endogenous RACK1 expression by RACK1 short hairpin RNAs (shRNAs) led to impaired proliferation of THP1 AML cells without inducing terminal differentiation. Further exploration revealed that RACK1 loss-of-function resulted in reduced GSK3β activity. GSK3β shRNA treatment showed similar effects to RACK1 loss-of-function. Our data collectively suggest that RACK1 contributes to THP1 cell proliferation through, at least partially, enhancing GSK3β activity. Thus, targeting RACK1 may have some important therapeutic implications in the treatment of AML.  相似文献   

13.
Sepsis induces extensive lymphocyte apoptosis that contributes to immunosuppression and mortality. Activation of the canonical NF-kappaB pathway, however, prevents TNF-alpha-induced lymphocyte apoptosis. In this study the function of canonical NF-kappaB in T cells was studied in the context of murine sepsis. Upon cecal ligation and puncture (CLP), NF-kappaB DNA binding activity in thymocytes declines relative to sham-operated mice. This decline in NF-kappaB activity is most likely due to posttranslational modifications such as deacetylation of p65. In parallel, cleavage of procaspase-3 is increased, whereas expression of NF-kappaB-dependent antiapoptotic genes Bcl-xL and c-IAP2 is suppressed upon sepsis induction. Interestingly, adoptive transfer of IkappaBalpha-deficient fetal liver stem cells into sublethally irradiated lymphopenic host mice reduced the decline in thymocyte survival, increased peripheral T cell numbers, and improved the mortality rate relative to wild-type reconstituted hosts after cecal ligation and puncture. In conclusion, lymphocyte-directed augmentation of canonical NF-kappaB ameliorates immunosuppression during murine sepsis. These data provide evidence for a new approach in sepsis therapy.  相似文献   

14.
Promoted proliferation and associated suppression of apoptosis at various stages of myeloid differentiation are well-known features of acute myeloid leukemia (AML), but understanding of the molecular processes involved remains limited. As a crucial circadian agent, neuronal PAS domain protein 2 (NPAS2) is widely recognized as a promising predictor of clinical outcome in various malignancies. Nevertheless, the understanding of its influence on AML is insufficient. Using KD cells and expression assays, we carried out detailed investigation of the role of NPAS2 in AML in vivo and in vitro. Firstly, we found that NPAS2 expression was elevated in AML cells both in vivo and in vitro. NPAS2 knockdown via lentiviral infection clearly suppressed proliferation of MV4-11 and MOLM-14 cells. Additionally, NPAS2 knockdown caused G1/S cell cycle arrest (CCA), which inhibited CDC25A expression. Moreover, NPAS2 knockdown promoted cell death, as evidenced by increased caspase-3 cleavage, and change in Bcl2/Bax production. Excessive CDC25A expression eliminated G1/S CCA triggered by NPAS2 knockdown and death of NPAS2 knocked down MOLM and MV4-11 cells. The expression of CDC25A was stabilized by NPAS2, which induced cell cycle progression and participated in suppression of cell death by modulating caspase-3 cleavage, and expression of Bcl2/Bax. We therefore indicated NPAS2 to be a crucial modulator of survival as well as proliferation. Our research sheds light on the etiology of the proliferation of promyelocytes modulated via NPAS2 with regard to AML.  相似文献   

15.
16.
17.
18.
In the NB4 model of acute promyelocytic leukemia (APL), ATRA, 9-cis retinoic acid (9-cis RA), the pan-RAR and RARalpha-selective agonists, TTNPB and AM580, induce growth inhibition, granulocytic differentiation and apoptosis. By contrast, two RXR agonists, a RARbeta agonist and an anti-AP1 retinoid have very limited activity, ATRA- and AM580-dependent effects are completely inhibited by RAR antagonistic blockade, while 9-cis RA-induced cell-growth-inhibition and apoptosis are equally inhibited by RAR and RXR antagonists. ATRA, 9-cis RA and AM580 cause upregulation of the mRNAs coding for pro-caspase-1, -7, -8, and -9, which, however, results in increased synthesis of only pro-caspase-1 and -7 proteins. These phenomena are associated with activation of pro-caspase-6, -7 and -8, cytochrome c release from the mitochondria, inversion of Bcl-2/Bax ratio and degradation of PML-RARalpha. Caspase activation is fundamental for retinoid-induced apoptosis, which is suppressed by the caspase-inhibitor z-VAD.  相似文献   

19.
Engagement between the natural killer group 2, member D (NKG2D) receptor and its ligands is one of the main mechanisms used by immune cells to target stressed cells for cell death. NKG2D ligands are known markers of cellular stress and are often upregulated on tumor cells. Certain drugs can further increase NKG2D ligand levels, thereby making tumor cells more susceptible to immune cell detection and destruction. However, the effectiveness of this approach appears to be limited with drug treatment alone, possibly due to immune dysregulation in the setting of malignancies. We hypothesized that a more effective approach would be a combination of NKG2D ligand-inducing drugs, such as the proteasome inhibitor bortezomib, and ex vivo-expanded peripheral blood γδ T cells (i.e., Vγ9Vδ2 T cells). Acute myeloid leukemia (AML) is a high-risk hematologic malignancy, and treatment has shown limited benefit with the addition of bortezomib to standard chemotherapy regimens. Two AML cells lines, Nomo-1 and Kasumi-1, were treated with increasing concentrations of bortezomib, and changes in NKG2D ligand expression were measured. Bortezomib treatment significantly increased expression of the NKG2D ligand UL16 binding protein (ULBP) 2/5/6 in both cell lines. Vγ9Vδ2 T cells were expanded and isolated from peripheral blood of healthy donors to generate a final cellular product with a mean of 96% CD3+/γδ T-cell receptor-positive cells. Combination treatment of the AML cell lines with γδ T cells and bortezomib resulted in significantly greater cytotoxicity than γδ T cells alone, even at lower effector-to-target ratios. Based on the positive results against AML and the generalizable mechanism of this combination approach, it was also tested against T-cell acute lymphoblastic leukemia (T-ALL), another high-risk leukemia. Similarly, bortezomib increased ULBP 2/5/6 expression in T-ALL cell lines, Jurkat and MOLT-4 and improved the cytotoxicity of γδ T cells against each line. Collectively, these results show that bortezomib enhances γδ T-cell-mediated killing of both AML and T-ALL cells in part through increased NKG2D ligand-receptor interaction. Furthermore, proof-of-concept for the combination of ex vivo-expanded γδ T cells with stress ligand-inducing drugs as a therapeutic platform for high-risk leukemias is demonstrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号