首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formation of a bispecific antibody by the use of leucine zippers.   总被引:10,自引:0,他引:10  
A new method is described for the production of bispecific F(ab')2 heterodimers using leucine zippers. Two heterodimer-forming "zipper" peptides derived from the Fos and Jun proteins were respectively linked to the Fab' portions of two different mAb by gene fusion. The antibodies used were 145-2C11, which binds to murine CD3, and anti-Tac, which binds to the p55 chain of the human IL-2R. Anti-Tac Fab'-Jun and anti-CD3 Fab'-Fos were expressed individually as F(ab'-zipper)2 homodimers in the mouse myeloma cell line Sp2/0. When these homodimers were reduced at the hinge region to form monomers and then reoxidized together, the resulting end products were mostly F(ab'-zipper)2 heterodimers. Bispecific anti-CD3 x anti-Tac F(ab'-zipper)2 heterodimers produced by this method were shown to be highly effective in recruiting cytotoxic T cells to lyse IL-2R-bearing HuT-102 cells in vitro.  相似文献   

2.
We studied the mechanisms whereby human T cells and NK cells are activated and directed to lyse tumor targets through the CD2 (T11/E-rosette) Ag. Using two cloned NK lines, we showed that these cells, as had previously been shown for T cells, could be directed to lyse an "NK-resistant" tumor target in the presence of antibody heterodimers. These heterodimers consisted of a (mAb) to CD2 (anti-T11(2) or anti-T11(3] linked to a mAb recognizing the tumor cell (J5, anti-CALLA). However, distinct differences between NK cells and T cells were observed with regard to the requirements for such directed lysis: first, only one epitope of CD2 on NK cells (either T11(2) or T11(3] needed to be recognized by the antibody heterodimer in order for directed lysis to occur, whereas for T cells both T11(2) and T11(3) epitopes had to be recognized. Second, in confirmation of previous data with monomeric anti-T11(2) or anti-T11(3) antibody, heterodimers constructed with these reagents enhanced conjugate formation between NK cells and tumor targets, whereas no such enhancement was seen with T cells. All types of heterodimer directed lysis were dependent on the adhesion molecule LFA-1, as an anti-LFA-1 antibody-blocked lysis. Third, whereas in T cells lysis mediated through CD2 appeared to be regulated by CD3 but not vice versa, all types of lysis by NK cells appeared to be regulated through CD2. Finally we showed that F(ab')2 fragments of the anti-T11(2) and anti-T11(3) antibodies could activate NK cells, but were unable to activate T cells either as cloned cytolytic lines, or in populations of PBL. The implications of our findings with regard to the role of CD2 in the activation of cytolytic cells is discussed.  相似文献   

3.
For tumor therapy with unprimed effector cells, we developed a novel combination of a CD2 x tumor Ag bispecific targeting Ab and an anti-CD2 triggering Ab. These Ab constructs were derived from two novel CD2 mAbs, termed M1 and M2 that, together, but not individually activate T cells. Unlike many other CD2 Abs, M1 and M2 do not interfere with TCR/CD3 triggering nor do they inhibit binding of CD2 to its ligand CD58, thus preserving the physiological functions of these important effector cell molecules. M2 was chemically conjugated with an Ab recognizing the epidermal growth factor-receptor (EGF-R). Incubation of unprimed peripheral blood mononuclear cells with the bispecific F(ab')2 construct (M2xEGF-R) in the presence of trigger Ab M1 led to efficient selective lysis of EGF-R-positive targets by CTL and NK cells. Importantly, the need for trigger Ab M1 for effector cell stimulation allowed to separate targeting from triggering steps in vitro and should thus enable to focus immune responses to sites of target Ag expression in vivo.  相似文献   

4.
We have studied the relationship of valency of CD3 stimulation and modulation of the CD3 receptor complex with biochemical and proliferative responses of T cells. Anti-CD3 Fab, as well as F(ab')2 and whole antibody caused rapid modulation of the CD3 antigen, whereas anti-CD3 conjugated to Sepharose did not. In the absence of monocytes, T cells stimulated with anti-CD3 Fab, F(ab')2, or F(ab')2-Sepharose showed differences in their ability to respond to second signals given by PMA, IL 1, IL 2, or antibodies to Tp67 and Tp44. None of the anti-CD3 signals alone caused resting T cells to produce IL 2, and only the Sepharose-bound anti-CD3 F(ab')2 caused T cells to express high levels of functional IL 2 receptors. Anti-CD3 F(ab')2-Sepharose-stimulated T cells produced IL 2 and proliferated in response to each of the second signals. Because anti-CD3-Sepharose did not cause modulation of the CD3 antigen, the ability of the Sepharose-bound antibody to induce T cells to express IL 2 receptors and to respond to individual second signals may be related to lack of modulation rather than valency of binding. Anti-CD3 Fab-stimulated T cells responded to PMA but required combinations of other second signals. T cells stimulated with unmodified anti-CD3 antibody or F(ab')2 fragments responded to PMA but did not respond to any other second signals alone or in combination. Stimulations that resulted in modulation (i.e., anti-CD3 whole antibody, anti-CD3 F(ab')2, or anti-CD3 Fab fragments) caused an increase in cytoplasmic calcium levels in resting T cells but blocked proliferation of T cells in response to mitogenic lectins or CD2 stimulation. Anti-CD3 F(ab')2 on Sepharose, however, did not block T cell proliferation. Whole bivalent anti-CD3 antibody or F(ab')2 fragments, but not monovalent Fab fragments, caused a rapid translation of protein kinase C activity from cytosol to membrane in the Jurkat T cell line. Because all of these modulate the receptor, these data indicate that the functional difference between monovalent and bivalent binding to CD3 is related to antibody valency and not to antigenic modulation. The use of Fab anti-CD3 stimulation that requires combinations of second signals for proliferation allowed an analysis of the functional relationships between IL 1, anti-Tp67, and anti-Tp44.  相似文献   

5.
A simple and efficient method is described for the production of pure bispecific F(ab' gamma)2 heterodimers, in which the individual antibody Fab' gamma fragments are joined via a stable thioether linkage. Hybrid molecules were constructed from both mouse monoclonal and rabbit polyclonal antibodies with equal efficiency, in the combinations mouse-rabbit and mouse-mouse. Peptic F(ab' gamma)2 fragments from the two chosen antibodies were first reduced to provide Fab' gamma SH. The SH groups on one of the Fab' gamma SH partners were then fully alkylated with o-phenylenedi-maleimide to provide free maleimide groups. Finally the two preparations, Fab' gamma mal and Fab' gamma SH, combined under conditions which allowed cross-linking of the maleimide and SH groups and avoided reoxidation of SH groups. The major product isolated from the reaction mixture after chromatography was always the F(ab' gamma)2 heterodimer (50 to 70%), other products being unreacted Fab' gamma and trace amounts of putative F(ab' gamma)3. Immunochemical analysis revealed that the thioether-linked F(ab' gamma)2 molecules were essentially all heterodimers, most of which had been joined via their Fd chains. The dual specificity of F(ab' gamma)2 heterodimers was tested functionally in three systems: 1) the combination (anti-idiotype + anti-phycoerythrin) linked L2C cells to the fluorochrome phycoerythrin, allowing fluorescence analysis; 2) the combination (anti-idiotype + anti-saporin) linked L2C cells to the ribosome-inactivating protein saporin, and transformed a subtoxic dose of saporin into a highly toxic mixture which prevented further protein synthesis by L2C cells; and 3) the combination of anti-idiotype with 3G8 (antibody to the Fc gamma receptor CD16) subjected L2C cells to cytotoxic attack by human mononuclear effectors.  相似文献   

6.
Prostate cancer is the most common noncutaneous malignancy in men. The prostate stem cell Ag (PSCA) is a promising target for immunotherapy of advanced disease. Based on a novel mAb directed to PSCA, we established and compared a series of murine and humanized anti-CD3-anti-PSCA single-chain bispecific Abs. Their capability to redirect T cells for killing of tumor cells was analyzed. During these studies, we identified a novel bispecific humanized Ab that efficiently retargets T cells to tumor cells in a strictly Ag-dependent manner and at femtomolar concentrations. T cell activation, cytokine release, and lysis of target cells depend on a cross-linkage of redirected T cells with tumor cells, whereas binding of the anti-CD3 domain alone does not lead to an activation or cytokine release. Interestingly, both CD8(+) and CD4(+) T cells are activated in parallel and can efficiently mediate the lysis of tumor cells. However, the onset of killing via CD4(+) T cells is delayed. Furthermore, redirecting T cells via the novel humanized bispecific Abs results in a delay of tumor growth in xenografted nude mice.  相似文献   

7.
It has previously been reported that T lymphocytes can be targeted by using bispecific antibodies consisting of anti-target antibody and anti-CD3. In the present study, a bispecific mAb was developed by somatic hybridization of mouse hybridomas, one producing a mAb against the Id determinant of the mouse B cell lymphoma 38C13 and the other a mAb against a polymorphic determinant on murine CD3. The bispecific antibody, anti-38C13 x anti-CD3, is bi-isotypic (IgG1 x IgG2a) and was purified by ion exchange and affinity chromatography. The dual specificity of the hybrid hybridoma-produced mAb could be demonstrated by flow cytometry, the induction of T cell proliferation, the induction of IL-2 secretion by polyclonal T cells, and redirected lysis of the relevant target cells. The hybrid (bi-isotypic) Fc part of the bispecific antibodies was nonfunctional in FcR-dependent redirected lysis. In vivo studies demonstrate that this bispecific mAb could efficiently target T cells towards the tumor cells, resulting in long term survival and cure of the lymphoma.  相似文献   

8.
The use of anti-CD3 x antitumor bispecific Abs is an attractive and highly specific approach in cancer therapy. Recombinant Ab technology now provides powerful tools to enhance the potency of such immunotherapeutic constructs. We designed a heterodimeric diabody specific for human CD19 on B cells and CD3epsilon chain of the TCR complex. After production in Escherichia coli and purification, we analyzed its affinity, stability, and pharmacokinetics, and tested its capacity to stimulate T cell proliferation and mediate in vitro lysis of CD19+ tumor cells. The effect of the diabody on tumor growth was investigated in an in vivo model using immunodeficient mice bearing a human B cell lymphoma. The CD3 x CD19 diabody specifically interacted with both CD3- and CD19-positive cells, was able to stimulate T cell proliferation in the presence of tumor cells, and induced the lysis of CD19+ cells in the presence of activated human PBL. The lytic potential of the diabody was enhanced in the presence of an anti-CD28 mAb. In vivo experiments indicated a higher stability and longer blood retention of diabodies compared with single chain Fv fragments. Treatment of immunodeficient mice bearing B lymphoma xenografts with the diabody and preactivated human PBL efficiently inhibited tumor growth. The survival time was further prolonged by including the anti-CD28 mAb. The CD3 x CD19 diabody is a powerful tool that should facilitate the immunotherapy of minimal residual disease in patients with B cell leukemias and malignant lymphomas.  相似文献   

9.
To study the CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) in the antitumor response, we propagated these subsets directly from tumor tissues with anti-CD3:anti-CD8 (CD3,8) and anti-CD3:anti-CD4 (CD3,4) bispecific mAb (BSMAB). CD3,8 BSMAB cause selective cytolysis of CD8+ lymphocytes by bridging the CD8 molecules of target lymphocytes to the CD3 molecular complex of cytolytic T lymphocytes with concurrent activation and proliferation of residual CD3+CD4+ T lymphocytes. Similarly, CD3,4 BSMAB cause selective lysis of CD4+ lymphocytes whereas concurrently activating the residual CD3+CD8+ T cells. Small tumor fragments from four malignant melanoma and three renal cell carcinoma patients were cultured in medium containing CD3,8 + IL-2, CD3,4 + IL-2, or IL-2 alone. CD3,8 led to selective propagation of the CD4+ TIL whereas CD3,4 led to selective propagation of the CD8+ TIL from each of the tumors. The phenotypes of the TIL subset cultures were generally stable when assayed over a 1 to 3 months period and after further expansion with anti-CD3 mAb or lectins. Specific 51Cr release of labeled target cells that were bridged to the CD3 molecular complexes of TIL suggested that both CD4+ and CD8+ TIL cultures have the capacity of mediating cytolysis via their Ti/CD3 TCR complexes. In addition, both CD4+ and CD8+ TIL cultures from most patients caused substantial (greater than 20%) lysis of the NK-sensitive K562 cell line. The majority of CD4+ but not CD8+ TIL cultures also produced substantial lysis of the NK-resistant Daudi cell line. Lysis of the autologous tumor by the TIL subsets was assessed in two patients with malignant melanoma. The CD8+ TIL from one tumor demonstrated cytotoxic activity against the autologous tumor but negligible lysis of allogeneic melanoma targets. In conclusion, immunocompetent CD4+ and CD8+ TIL subsets can be isolated and expanded directly from small tumor fragments of malignant melanoma and renal cell carcinoma using BSMAB. The resultant TIL subsets can be further expanded for detailed studies or for adoptive immunotherapy.  相似文献   

10.
The 50 KD sheep red blood cell antigen receptor CD2 is the earliest T cell differentiation marker and is present on all blood-derived T cells, including natural killer (NK) cells. The CD2 antigen is also known to serve as an important activation site regulating various T cell functions. We report that anti-CD2 monoclonal antibodies (MAb) block MHC-restricted class I- and class II-specific cytolysis by CD2+, CD3+ clones of the relevant target cells, irrespective of whether lysis by these clones is blocked by anti-CD3 or anti-CD8 MAb. Moreover, anti-CD2 MAb (but not anti-CD3 MAb) are able to reduce MHC-nonrestricted, nonspecific cytolysis: a) by CD2+, CD3+ clones of K562 target cells; and b) by CD2+, CD3 NK clones of K562 as well as Daudi cells. Different preparations of anti-CD2 MAb vary in their capacity to inhibit cytolysis. For cloned effector cells, the percent inhibition of lysis by CLB-T11 greater than Lyt-3 MAb, whereas with "fresh" NK cells, the lysis inhibitory ability of Lyt-3 greater than CLB-T11. The antibody-dependent cellular cytotoxicity by "fresh" and cloned NK cells is not inhibited by anti-CD2 MAb. Anti-CD2 MAb also prevent the induction of lysis by cross-linked anti-CD3 MAb, e.g., by CD2+, CD3+ cloned cloned cells against (IgG-FcR+) Daudi cells. Anti-CD2 MAb can also induce cytolysis in some, but not all, CD2+, CD3- NK clones against xenogeneic P815 mouse mastocytoma cells. Anti-CD2 MAb, in combination with lectins (PHA or Con A: pretreatment of effector cells), can also induce cytolytic activity by CD2+, CD3+ clones against Daudi cells. Our data therefore support the concept that the CD2 antigen is an important activation site regulating a wide variety of T cell functions including cytolysis. Whether ligand interaction with the CD2 antigens results in augmentation or inhibition of T cell functions may very well depend on the type of CD2 antigen-ligand interaction, e.g., cross-linked ligand-receptor interaction may, in general, enhance the various T cell functions, whereas noncross-linked ligand-receptor interactions may inhibit such functions, as we and other investigators demonstrated earlier for the CD3/Ti antigen-receptor complex activation site.  相似文献   

11.
The effects of anti-CD3 mAb on MHC-unrestricted cytotoxic activity of NK depleted PHA-activated human T cells were examined. Anti-CD3 mAb had variable effects on killing of K562 or Daudi targets. Whereas lower concentrations of OKT3 often inhibited lysis of either target, higher concentrations (greater than 1 micrograms/ml) frequently increased K562 killing and always augmented Daudi lysis. However, lysis of the renal cell carcinoma, Cur, was consistently inhibited by OKT3 over a broad concentration range. Such variable effects were not related to differential regulation of heterogeneous subsets of effector cells, as similar patterns of OKT3-mediated modulation of tumor cell lysis by T cell clones was also observed. Another IgG2a anti-CD3 mAb, 64.1, and either F(ab')2 fragments of OKT3 or intact OKT3 in the presence of aggregated human Ig were found to inhibit lysis of Cur, K562, and Daudi targets consistently. Additional experiments were carried out to determine whether modulation of CD3 accounted for the inhibitory effects of the anti-CD3 mAb. PMA was noted to cause modulation of CD3 from the surface of PHA or alloantigen-activated T cells, and the combination of anti-CD3 and PMA caused even more marked modulation of CD3. Whereas preincubation with PMA and/or anti-CD3 decreased alloantigen-specific cytotoxic T cell function in relative proportion to the loss of CD3 expression, no consistent relationship between CD3 expression and the capacity of PHA-activated T cells to kill Cur targets was noted. PMA alone caused no consistent alteration of Cur lysis. Moreover, in the presence of PMA, anti-CD3 mAb caused no significant inhibitory effect on Cur lysis, in spite of increased modulation and in some cases virtual total loss of surface CD3 expression. These findings indicate that when FcR interactions are prevented, anti-CD3 mAb consistently inhibit MHC-unrestricted cytotoxicity by PHA-activated T cells. Despite this, the data support the conclusion that CD3/TCR complex interactions with target cells are not required for either target cell recognition or triggering of lysis by MHC-unrestricted cytotoxic T cells.  相似文献   

12.
Human thymocytes bearing the CD4 and/or CD8 antigens can be fractionated into cells with an immature and more mature phenotype based on their quantitative expression of the CD3 Ag (J. Immunol. 138:3108; J. Immunol. 139:1065). We show that the expression of CD4 and CD8 on thymocyte subpopulations with low CD3 (CD3L) and high CD3 (CD3H) is regulated by activation through the CD2 molecule and perturbation of the CD3-T cell receptor complex (CD3-Ti). Similar to its previously reported effects on peripheral T cells, PMA was able to induce the down-regulation of surface CD4, but not CD8, on thymocyte subpopulations. PMA could induce CD4 and CD8 phosphorylation in both CD3L and CD3H fractions. These results suggest that if changes in phosphorylation represent the mechanism by which CD4 and CD8 are able to transmit signals, this mechanism is operative in both CD3L and CD3H subpopulations. Treatment with anti-T11(2) and anti-T11(3) antibodies (CD2 activation pathway) resulted in partial down-regulation of CD4 but not CD8 surface expression on both CD3L and CD3H thymocytes. Similar treatment had no detectable effect on peripheral T cells. The down-regulation of surface CD4 induced by activation via CD2 could be inhibited by treatment of thymocytes with anti-CD3 antibodies. Treatment of thymocytes with anti-CD3 alone or following CD2 activation induced the selective down-regulation of surface CD8 within 15 minutes. These results suggest that CD2 and CD3-Ti triggering may regulate CD4 and CD8 surface expression on thymocytes. Furthermore, these results suggest that "cross-talk" between the CD2 and CD3-Ti pathway of activation may involve CD4 and CD8 molecules.  相似文献   

13.
To target NK cells against non-Hodgkin's lymphoma, we constructed a bispecific diabody (BsDb) with reactivity against both human CD19 and FcgammaRIII (CD16). Bacterially produced CD19 x CD16 BsDb specifically interacted with both CD19(+) and CD16(+) cells and exhibited significantly higher apparent affinity and slower dissociation from the tumor cells than from effector cells. It was able to induce specific lysis of tumor cells in the presence of isolated human NK cells or nonfractionated PBLs. The combination of the CD19 x CD16 BsDb with a previously described CD19 x CD3 BsDb and CD28 costimulation significantly increased the lytic potential of human PBLs. Treatment of SCID mice bearing an established Burkitt's lymphoma (5 mm in diameter) with human PBLs, CD19 x CD16 BsDb, CD19 x CD3 BsDb, and anti-CD28 mAb resulted in the complete elimination of tumors in 80% of animals. In contrast, mice receiving human PBLs in combination with either diabody alone showed only partial tumor regression. These data clearly demonstrate the synergistic effect of small recombinant bispecific molecules recruiting different populations of human effector cells to the same tumor target.  相似文献   

14.
Anti-tumor associated antigen (TAA).CD3.CD28 trispecific antibody(TsAb) is able to provide two signals for fully and continuously activation of T lymphocytes and recruit them around tumor cells, presenting an attractive concept in tumor immunotherapy. Here, a new single chain trispecific antibody (scTsAb), named CEA-scTsAb, was constructed by fusion of anti-CEA (Carcinoma Embryonic Antigen) single chain antibody (scFv), anti-CD3 scFv and anti-CD28 VH, spaced by polypeptide interlinkers taken from the fragment of constant region (FC) of human IgG and human serum albumin (HSA). It was expressed in Escherichia coli at low temperature (30 degrees C) with up to 50% of the antibody being present in soluble form. After one step of DEAE anion chromatography, the soluble product was sufficiently pure for further in vitro activity assays. First, it was proved that CEA-scTsAb could recognize three antigens (CEA, CD28 and Jurkat cell membrane antigen) specifically and could distinguish antigen positive cells from antigen negative cells in vitro. Then fresh PBMC (peripheral blood mononuclear cells), without being pre-treated by co-stimulatory reagents, such as IL-2 or CD28 mAb, were used as effector cells to test their ability to mediate tumor specific cytolysis of CEA-positive tumor cells, SW1116. It was found by photomicrography that T lymphocytes were attracted to SW1116 cells in the presence of CEA-scTsAb, which resulted in effective cytolysis of tumor cells. As shown by MTT assay, the efficacy of tumor specific cytolysis mediated by CEA-scTsAb related to both the quantity and activation of PBMC. At an effector cells/target cells ratio (E/T) of 5, it was proved by dual-color FACS with propidium iodide (PI) and FITC-annexin V that both necrosis and apoptosis of tumor cells were causes of tumor specific cytolysis. In summary, a new single chain trispecific (CEA x CD3 x CD28) antibody was constructed and characterized carefully in this paper and was found to possess functions: (i) to activate T lymphocytes independently of additional co-stimulatory signal, (ii) to attract activated T lymphocytes around CEA-positive tumor cells, (iii) to attack CEA-positive tumor cells with recruited T lymphocytes. Because it recognizes a widely distributed tumor antigen (CEA), with moderate molecular weight (about 75 kDa) and a simple production procedure, and is able to mediate a high level of tumor specific cytolysis without any additional co-stimulating reagents, CEA-scTsAb is very promising for the task of immunotherapy in future.  相似文献   

15.
构建抗CD20嵌合抗体片段F(ab′)2 突变体 ,研究其在大肠杆菌中的高效表达及其表达产物的生物学活性。采用PCR法构建抗CD20嵌合抗体片段F(ab′)2 突变体 ,并用双脱氧终止法测定DNA序列 ;采用 19L发酵罐高密度发酵抗CD20嵌合抗体片段F(ab′)2 突变体 ,采用亲和色谱和分子筛色谱法纯化表达产物 ,并用SDS-PAGE和薄层激光扫描鉴定纯化产物 ;采用活细胞间接免疫荧光法测定纯化产物与靶细胞的结合活性 ;MTT法测定纯化产物对Raji细胞的生长抑制作用 ,并研究其作用机理。DNA序列测定结果表明 ,抗CD20嵌合抗体片段F(ab′)2 突变体已成功构建 ,表达可溶性产物的产量达 360mg L ,具有与Raji细胞 (CD20+)结合的活性 ,并抑制Raji细胞的生长 ,其作用机理为诱导Raji细胞凋亡。此突变体有望成为治疗非何杰金氏B细胞淋巴瘤的药物。  相似文献   

16.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

17.
The use of a divalent effector molecule improves bispecific antibody (bsMAb) pretargeting by enabling the cross-linking of monovalently bound bsMAb on the cell surface, thereby increasing the functional affinity of a bsMAb. In this work, it was determined if a bsMAb with divalency for the primary target antigen would improve bsMAb pretargeting of a divalent hapten. The pretargeting of a (99m)Tc-labeled divalent DTPA-peptide, IMP-192, using a bsMAb prepared by chemically coupling two Fab' fragments, one with monovalent specificity to the primary target antigen, carcinoembryonic antigen (CEA), and to indium-loaded DTPA [DTPA(In)], was compared to two other bsMAbs, both with divalency to CEA. One conjugate used the whole anti-CEA IgG, while the other used the anti-CEA F(ab')(2) fragment to make bsMAbs that had divalency to CEA, but with different molecular weights to affect their pharmacokinetic behavior. The rate of bsMAb blood clearance was a function of molecular weight (IgG x Fab' < F(ab')(2) x Fab' < Fab' x Fab' conjugate). The IgG x Fab' bsMAb conjugate had the highest uptake and longest retention in the tumor. However, when used for pretargeting, the F(ab')(2) x Fab' conjugate allowed for superior tumor accretion of the (99m)Tc-IMP-192 peptide, because its more rapid clearance from the blood enabled early intervention with the radiolabeled peptide when tumor uptake of the bsMAb was at its peak. Excellent peptide targeting was also seen with the Fab' x Fab' conjugate, albeit tumor uptake was lower than with the F(ab')(2) x Fab' conjugate. Because the IgG x Fab' bsMAb cleared from the blood so slowly, when the peptide was given at the time of its maximum tumor accretion, the peptide was captured predominantly by the bsMAb in the blood. Several strategies were explored to reduce the IgG x Fab' bsMAb remaining in the blood to take advantage of its 3-4-fold higher tumor accretion than the other bsMAb conjugates. A number of agents were tested, including those that could clear the bsMAb from the blood (e.g., galactosylated or nongalactosylated anti-id antibody) and those that could block the anti-DTPA(In) binding arm [e.g., DTPA(In), divalent-DTPA(In) peptide, and DTPA coupled to bovine serum albumin (BSA) or IgG]. When clearing agents were given 65 h after the IgG x Fab' conjugate (time of maximum tumor accretion for this bsMAb), (99m)Tc-IMP-192 levels in the blood were significantly reduced, but a majority of the peptide localized in the liver. Increasing the interval between the clearing agent and the time the peptide was given to allow for further processing of the bsMAb-clearing agent complex did not improve targeting. At the dose and level of substitution tested, galacosylated BSA-DTPA(In) was cleared too quickly to be an effective blocking agent, but BSA- and IgG-DTPA(In) conjugates were able to reduce the uptake of the (99m)Tc-IMP-192 in the blood and liver. Tumor/nontumor ratios compared favorably for the radiolabeled peptide using the IgG x Fab'/blocking agent combination and the F(ab')(2) x Fab' (no clearing/blocking agent), and peptide uptake 3 h after the blocking agent even exceeded that of the F(ab')(2) x Fab'. However, this higher level of peptide in the tumor was not sustained over 24 h, and actually decreased to levels lower than that seen with the F(ab')(2) x Fab' by this time. These results demonstrate that divalency of a bsMAb to its primary target antigen can lead to higher tumor accretion by a pretargeted divalent peptide, but that the pharmacokinetic behavior of the bsMAb also needs to be optimized to allow for its clearance from the blood. Otherwise, blocking agents will need to be developed to reduce unwanted peptide uptake in normal tissues.  相似文献   

18.
在构建并成功表达抗CD3/抗CD20双特异性单链抗体(bscCD3×CD20)的基础上,对其在体外介导T淋巴细胞杀伤Ramous B淋巴瘤细胞的生物活性进行了分析。Annexin V/PI(AV/PI)染色和形态学观察及扫描电镜分析表明bscCD3×CD20介导的B淋巴瘤细胞体外裂解作用是通过先诱导靶细胞凋亡而继发坏死、裂解的方式实现的。非放射性细胞毒性分析表明bscCD3×CD20介导的T淋巴细胞杀伤活性随抗体浓度、反应时间和效靶比的升高而增加。在抗体浓度为5μg/mL、作用时间为24h、效靶比为10∶1时,杀伤活性最高可达87·3%。采用美国SuperArray人细胞凋亡芯片检测细胞杀伤起始阶段细胞凋亡相关基因的表达水平变化,许多凋亡相关基因的表达均发生了不同程度的上调或下调,其中ATM基因表达升高了187倍,p53基因升高了15倍,提示ATM-p53途径可能是bscCD3×CD20介导T细胞诱导B淋巴瘤细胞凋亡的主要途径。  相似文献   

19.
The requirements for activation of the lytic machinery through CD2 of TCR gamma delta+/CD3+ cells were examined, by utilizing bispecific heteroconjugates containing anti-CD2 mAb cross-linked to anti-DNP. Contrary to the CD2 activation requirements in TCR alpha beta+/CD3+ cells, cytotoxic activity in TCR gamma delta+/CD3+ clones and TCR-/CD3- NK cell clones can be induced by heteroconjugates containing a single anti-CD2 (OKT11.1) mAb. Activation of TCR gamma delta+/CD3+ cells via CD2 is independent of heteroconjugates binding to CD16 (Fc gamma RIII), because heteroconjugates prepared from Fab fragments induced equal levels of lysis. Moreover, anti-CD16 mAb did not inhibit triggering via CD2 in TCR gamma delta+/CD3+ cells. In TCR-/CD3- NK cells, however, induction of cytotoxicity via CD2 is co-dependent on interplay with CD16. Anti-CD3 mAb blocked the anti-CD2 x anti-DNP heteroconjugate-induced cytotoxicity of TCR gamma delta+/CD3+ cells, indicating a functional linkage between CD2 and CD3 on these cells. We conclude that induction of lysis via CD2 shows qualitatively different activation requirements in TCR gamma delta+/CD3+, TCR alpha beta+/CD3+ CTL and TCR-/CD3- NK cells.  相似文献   

20.
Induction of nonspecific cytotoxicity by monoclonal anti-T3 antibodies   总被引:8,自引:0,他引:8  
The effects of monoclonal anti-T3 antibodies on the effector phase of cytotoxic T lymphocytes (CTL) were studied with respect to antigen-specific and antigen-nonspecific lysis of different target cells. Anti-T3 antibodies inhibited the antigen-specific lysis by CTL generated in mixed lymphocyte cultures (MLC), but they concomitantly augmented the nonspecific killing of third-party cells such as the cell lines Daudi, Raji, and K562. This nonspecific cytotoxicity was induced by various anti-T3 antibodies, whereas antibodies reactive with other antigens expressed on the cytotoxic effector cells lacked any such activity. Anti-T3 antibodies induced nonspecific cytotoxicity only when activated T cells, obtained by primary MLC, by repeated restimulation, or after cloning, were used. The antibodies had no effect on unstimulated peripheral T lymphocytes or thymocytes. The inhibition of the antigen-specific lysis and the induction of nonspecific lysis by anti-T3 was dose dependent, and both effects occurred at the same concentration range of anti-T3. F(ab')2 fragments of anti-T3 inhibited the specific lysis but were not able to induce cytotoxic activity, indicating that this induction is an Fc-dependent process. When different target cells were tested, only Fc receptor-positive cells were susceptible for this nonspecific cytotoxicity. Thus, anti-T3 antibodies have a dual effect on effector CTL: they inhibit antigen-specific lysis and concomitantly induce nonspecific lysis in an Fc-dependent way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号