首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Han J  Shin I 《Cellular signalling》2000,12(11-12):731-736
We have investigated the roles of ceramide in Fas signalling leading to phospholipase D (PLD) activation in A20 cells. Upon stimulation of Fas signalling by anti-Fas monoclonal antibody, sphingomyelin hydrolysis and activation of PLD were induced. Also, the translocation of protein kinase C (PKC) betaI and betaII and the elevation of diacylglycerol (DAG) content were induced by Fas cross-linking. When phosphatidylcholine-specific phospholipase C (PC-PLC) was inhibited by D609, the Fas-induced changes in PLD activity, DAG content, and PKC translocation were inhibited. In contrast, D609 had no effect on Fas-induced alterations in sphingolipid metabolism, suggesting that changes in ceramide content do not account for Fas-induced PLD activation. Furthermore, C6-ceramide had no effect on Fas-induced PLD activation and PKC translocation. Taken together, these data might suggest that ceramide generated by Fas cross-linking does not affect PKC beta-dependent PLD activity stimulated by anti-Fas monoclonal antibody in A20 cells.  相似文献   

2.
We have investigated the roles of ceramide in Fas signalling leading to phospholipase D (PLD) activation in A20 cells. Upon stimulation of Fas signalling by anti-Fas monoclonal antibody, sphingomyelin hydrolysis and activation of PLD were induced. Also, the translocation of protein kinase C (PKC) βI and βII and the elevation of diacylglycerol (DAG) content were induced by Fas cross-linking. When phosphatidylcholine-specific phospholipase C (PC-PLC) was inhibited by D609, the Fas-induced changes in PLD activity, DAG content, and PKC translocation were inhibited. In contrast, D609 had no effect on Fas-induced alterations in sphingolipid metabolism, suggesting that changes in ceramide content do not account for Fas-induced PLD activation. Furthermore, C6-ceramide had no effect on Fas-induced PLD activation and PKC translocation. Taken together, these data might suggest that ceramide generated by Fas cross-linking does not affect PKC β-dependent PLD activity stimulated by anti-Fas monoclonal antibody in A20 cells.  相似文献   

3.
We have previously reported that Fas cross-linking resulted in an increase in phospholipase D activity in A20 murine cells (J.-S. Han et al., Arch. Biochem. Biophys. 367, 233-239, 1999). In an attempt to explore the Fas downstream factor contributing to the activation of phospholipase D, we have investigated the possible involvement of a small GTP biding protein Ras in signaling events that were triggered by Fas cross-linking. Upon adenoviral expression of dominant negative mutant of Ras (N17Ras), an increase in phospholipase D activity by anti-Fas monoclonal antibody was diminished. Also, the Fas downstream signaling events triggered by Fas cross-linking such as the activation of phosphatidylcholine-specific phospholipase C, the increase in diacylglycerol level, and the translocation of protein kinase C to membrane fraction were all reduced by N17Ras expression. When parallel experiments were performed with manumycin-A, a Ras farnensyltransferase inhibitor, almost identical inhibitory effects on Fas downstream signaling were exhibited. These data suggest that Ras GTPase is essential in transmitting phospholipase D activation signal induced by Fas cross-linking and is located at phosphatidylcholine-specific phospholipase C upstream in Fas signaling cascades.  相似文献   

4.
We have previously reported that Fas cross-linking resulted in the activation of phosphatidylcholine-specific phospholipase C (PC-PLC) and the subsequent activation of protein kinase C (PKC) and phospholipase D (PLD) in A20 cells. In an attempt to correlate the existence of PC-PLC activity and activation of PLD by Fas activation among various Fas-expressing murine cell lines, we have investigated the effect of anti-Fas monoclonal antibody on PC-PLC and PLD activities in A20, P388D1 and YAC-1 cell lines. Upon treatment of anti-Fas monoclonal antibody to these three cell lines, the activation of PLD was only observed in A20 cells. When the effect of anti-Fas monoclonal antibody on PKC and PC-PLC activities in Fas-expressing clones were investigated, the activation of PKC and PC-PLC was detected only in A20 clones. Results presented here also show that exogenous addition of Bacillus cereus PC-PLC activates PC hydrolysis, PKC and PLD in all three murine cell lines. These findings suggest that the activation of PC-PLC is a necessary requirement for the activation of PLD by Fas cross-linking and cell lines devoid of functional PC-PLC activity could exhibit enhanced PLD activity by exogenous addition of PC-PLC.  相似文献   

5.
The early signals generated following cross-linking of Fas/APO-1, a transmembrane receptor whose engagement by ligand results in apoptosis induction, were investigated in human HuT78 lymphoma cells. Fas/APO-1 cross-linking by mAbs resulted in membrane sphingomyelin hydrolysis and ceramide generation by the action of both neutral and acidic sphingomyelinases. Activation of a phosphatidylcholine-specific phospholipase C (PC-PLC) was also detected which appeared to be a requirement for subsequent acidic sphingomyelinase (aSMase) activation, since PC-PLC inhibitor D609 blocked Fas/APO-1-induced aSMase activation, but not Fas/APO-1-induced neutral sphingomyelinase (nSMase) activation. Fas/APO-1 cross-linking resulted also in ERK-2 activation and in phospholipase A2 (PLA2) induction, independently of the PC-PLC/aSMase pathway. Evidence for the existence of a pathway directly involved in apoptosis was obtained by selecting HuT78 mutant clones spontaneously expressing a newly identified death domain-defective Fas/APO-1 splice isoform which blocks Fas/APO-1 apoptotic signalling in a dominant negative fashion. Fas/APO-1 cross-linking in these clones fails to activate PC-PLC and aSMase, while nSMase, ERK-2 and PLA2 activates are induced. These results strongly suggest that a PC-PLC/aSMase pathway contributes directly to the propagation of Fas/APO-1-generated apoptotic signal in lymphoid cells.  相似文献   

6.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

7.
Kim JH  Yoon YD  Shin I  Han JS 《IUBMB life》1999,48(4):445-452
Although recent studies have demonstrated that ovarian follicular atresia occurs by apoptosis of granulosa cells, the intracellular signaling pathways involved in apoptotic cell death are still poorly characterized. We examined the role of ceramide as a candidate intracellular mediator of Fas-mediated signaling in cultured granulosa cells. Expression of Fas antigen was demonstrated by Western blot of granulosa cell lysates and immunostaining of cultured granulosa cells. Exposure of granulosa cells to anti-Fas monoclonal antibody (anti-Fas mAb) resulted in significant sphingomyelin hydrolysis, which was accompanied by a progressive increase in endogenous levels of ceramide. The addition of exogenous C6-ceramide induced drastic morphological change, including nuclear fragmentation and typical apoptotic DNA degradation. Furthermore, both anti-Fas mAb and C6-ceramide decreased phospholipase D (PLD) activity and diacylglycerol (DAG) concentrations in a time- or a dose-dependent manner. In addition, treatment with phorbol 12-myristate 13-acetate completely attenuated the ceramide-induced inhibition of PLD activity and partially suppressed ceramide-induced apoptosis. These results indicate that the Fas/ceramide signaling pathway might play a role in granulosa cell apoptosis and suggest that the PLD/DAG pathway might be cross-linked to the Fas/ceramide pathway in apoptotic processes of granulosa cells.  相似文献   

8.
The signal transduction from insulin to its receptors and Ras has been extensively studied, while little has been reported beyond these steps. We found that the expression of human interleukin 6 gene under the control of immediate early gene promoter of human cytomegalovirus was enhanced by insulin sitmulation in Chinese hamster ovary cells. The induction effect of insulin was not significantly affected by inhibitors or activators of conventional protein kinase C, cAMP dependent protein kinase and phosphoinositide -3 kinase, however, pre-incubation of the cells with D609, a specific inhibitors of phosphatidylcholine-specific phospholipase C completely abolished the induction effect. These results clearly demonstrate that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of hIL-6 expression from the human cytomegalovirus promoter in Chinese hamster ovary cells and strongly suggest that it plays an important role in the insulin signaling pathways.Abbreviations CHO – Chinese hamster ovary; hCMV promoter – immediate early gene promoter of human cytomegalovirus; hIL-6 – human interleukin 6; PC-PLC-phosphatidylcholine-specific phospholipase C; PI-3 kinase – phosphoinositide 3 kinase; PKA – cAMP dependent protein kinase; PKC – protein kinase C.  相似文献   

9.
As an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 has been widely used to explain the role of PC-PLC in various signal transduction pathways. This study shows that D609 inhibits group IV cytosolic phospholipase A2 (cPLA2), but neither secretory PLA2 nor a Ca2+ -dependent PLA2. Dixon plot analysis shows a mixed pattern of noncompetitive and uncompetitive inhibition with Ki = 86.25 microM for the cPLA2 purified from bovine spleen. D609 also time- and dose-dependently reduces the release of arachidonic acid from a Ca2+- ionophore A23187-stimulated MDCK cells. In the AA release experiment, IC50 of D609 was approximately 375 microM, suggesting that this reagent may not enter the cells easily. The present study indicates that the inhibitory effects of D609 on various cellular responses may be partially attributable to the inhibition of cPLA2.  相似文献   

10.
The effect of D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C, was investigated on cyst development of the Prugniaud strain of Toxoplasma gondii in vitro. Following treatment with the inhibitor 24 h after cell infection, cyst development was affected as assessed by staining with the bradyzoite-specific mAb CC2: the CC2-reactive antigen was shown to be differently located (in the wall versus the matrix under control conditions). This correlated with a decrease in parasite multiplication induced by D609. Pretreatment of the parasites with D609 inhibited their entry into the host cells, whereas pretreatment of the host cells enhanced the intracellular multiplication of the para sites, without any effect on cell invasion or cyst formation. Our results suggest a crucial role for phosphatidylcholine-specific phospholipase C in the pathophysiology of toxoplasmosis.  相似文献   

11.
Regulation and functional significance of phospholipase D in myocardium   总被引:3,自引:0,他引:3  
There is now clear evidence that receptor-dependent phospholipase D is present in myocardium. This novel signal transduction pathway provides an alternative source of 1,2-diacylglycerol, which activates isoforms of protein kinase C. The members of the protein kinase C family respond differently to various combinations of Ca2+, phosphatidylserine, molecular species of 1,2-diacylglycerol and other membrane phospholipid metabolites including free fatty acids. Protein kinase C isozymes are responsible for phosphorylation of specific cardiac substrate proteins that may be involved in regulation of cardiac contractility, hypertrophic growth, gene expression, ischemic preconditioning and electrophysiological changes. The initial product of phospholipase D, phosphatidic acid, may also have a second messenger role. As in other tissues, the question how the activity of phospholipase D is controlled by agonists in myocardium is controversial. Agonists, such as endothelin-1, atrial natriuretic factor and angiotensin 11 that are shown to activate phospholipase D, also potently stimulate phospholipase C- in myocardium. PMA stimulation of protein kinase C inactivates phospholipase C and strongly activates phospholipase D and this is probably a major mechanism by which agonists that promote phosphatidyl-4,5-bisphosphate hydrolysis secondary activate phosphatidylcholine-hydrolysis. On the other hand, one group has postulated that formation of phosphatidic acid secondary activates phosphatidyl-4,5-bisphosphate hydrolysis in cardiomyocytes. Whether GTP-binding proteins directly control phospholipase D is not clearly established in myocardium. Phospholipase D activation may also be mediated by an increase in cytosolic free Ca2+ or by tyrosine-phosphorylation.  相似文献   

12.
Thromboxane A2 (TXA2) receptor-mediated signal transduction was investigated in 1321N1 human astrocytoma cells. 9,11-Epithio-11,12-methano-TXA2 (STA2), a TXA2 receptor agonist, induced Ca2+ mobilization and phosphoinositide hydrolysis in a concentration-dependent manner. These responses were inhibited by treatment with U73122, an inhibitor of phosphatidylinositol-specific phospholipase C, or by culturing in 0.5% fetal calf serum containing 0.5 mM dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP) for 2 days. However, the dbcAMP treatment augmented the TXA2 receptor-mediated phosphorylation of mitogen-activated protein kinase (MAPK). These results were confirmed by a functional MAPK assay measuring the incorporation of 32P into the MAPK substrate peptide. The TXA2 receptor-mediated MAPK activation was inhibited by SQ29548, a TXA2 receptor antagonist, and GF109203X, an inhibitor of protein kinase C. Although U73122 did not inhibit or only slightly inhibited the activation of MAPK, D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, potently attenuated the activation in a concentration-dependent manner. Furthermore, STA2 accelerated the release of [3H]choline metabolites from the cells prelabeled with [3H]choline chloride. This release was inhibited by treatment with D-609. These results suggest that phosphatidylcholine-specific phospholipase C and protein kinase C, but not phosphatidylinositol-specific phospholipase C, are involved in TXA2 receptor-mediated MAPK activation in 1321N1 human astrocytoma cells.  相似文献   

13.
We investigated the regulatory mechanism of interleukin-6 (IL-6) synthesis induced by interleukin-1 (IL-1) in osteoblast-like MC3T3-E1 cells. IL-1 stimulated the secretion of IL-6 in a dose-dependent manner in the range between 0.1 and 100 ng/ml. Staurosporine and calphostin C, inhibitors of protein kinase C (PKC), significantly enhanced the IL-1-induced secretion of IL-6. The stimulative effect of IL-1 was markedly amplified in PKC down-regulated MC3T3-E1 cells. IL-1 produced diacylglycerol in MC3T3-E1 cells. IL-1 had little effect on the formation of inositol phosphates and choline. On the contrary, IL-1 significantly stimulated the formation of phosphocholine dose-dependently. D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed the IL-1-induced diacylglycerol production. The IL-1-induced IL-6 secretion was significantly enhanced by D-609. These results indicate that IL-1 activates PKC via phosphatidylcholine-specific phospholipase C in osteoblast-like cells, and the PKC activation then limits IL-6 synthesis induced by IL-1 itself. J. Cell. Biochem. 67:103–111, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Murine B lymphoma A20 cells are highly sensitive to Fas-mediated death signals induced by anti-Fas antibody Jo2 or cross-linked Fas ligand (FasL). We have found that the microfilament poison cytochalasin D blocks Fas-mediated apoptosis induced by Jo2 but not FasL in A20 cells. The induction of Fas-mediated apoptosis by Jo2 was antagonized by anti-Fcgamma RII/RIII receptor (FcgammaR) antibody, and defective in FcgammaR-negative A20 cells. Since the induction of Jo2-mediated apoptosis in FcgammaR-negative A20 cells was reversed by the addition of wild type A20 cells or the cross-linking agent protein A, Fas-expressing bystander A20 cells seem to be killed by other A20 cells that capture and cross-link monomeric Jo2 via FcgammaR. Although cytochalasin D affected FcgammaR-mediated cross-linking of Jo2 molecules, the drug markedly inhibited the intracellular signaling pathway induced by Jo2. The blockade of Jo2-induced apoptosis by cytochalasin D occurred upstream of caspase-8 activation. Thus, these observations suggest that actin cytoskeleton is required for early apoptosis signaling induced by Jo2, but not physiological FasL.  相似文献   

15.
The CD38 cell surface receptor is a potent activator for splenic, B lymphocytes. The molecular mechanisms regulating this response, however, remain incompletely characterized. Activation of the nonreceptor tyrosine kinase, Btk, is essential for CD38 downstream signaling function. The major Btk-dependent substrate in B cells, phospholipase C-gamma2 (PLC-gamma2), functions to generate the key secondary messengers, inositol-1,4,5 trisphosphate and diacylglycerol. Surprisingly, CD38 ligation results in no detectable increase in phosphoinositide metabolism and only a minimal increase in cytosolic calcium. We hypothesized that Btk functioned independently of PLC-gamma2 in the CD38 signaling pathway. Accordingly, we demonstrate that CD38 cross-linking does not result in the functional phosphorylation of PLC-gamma2 nor an increase in inositol-1,4,5 trisphosphate production. Furthermore, splenic B cells exhibit a normal CD38-mediated, proliferative response in the presence of the phosphoinositide-PLC inhibitor, U73122. Conversely, protein kinase C (PKC) beta-deficient mice, or PKC inhibitors, indicated the requirement for diacylglycerol-dependent PKC isoforms in this pathway. Loss of PKC activity blocked CD38-dependent, B cell proliferation, NF-kappaB activation, and subsequent expression of cyclin-D2. These results suggested that an alternate diacylglycerol-producing phospholipase must participate in CD38 signaling. Consistent with this idea, CD38 increased the enzymatic activity of the phosphatidylcholine (PC)-metabolizing enzymes, PC-PLC and phospholipase D. The PC-PLC inhibitor, D609, completely blocked CD38-dependent B cell proliferation, IkappaB-alpha degradation, and cyclin-D2 expression. Analysis of Btk mutant B cells demonstrated a partial requirement for Btk in the activation of both enzymes. Taken together, these data demonstrate that CD38 initiates a novel signaling cascade leading to Btk-, PC-PLC-, and phospholipase D-dependent, PLC-gamma2-independent, B lymphocyte activation.  相似文献   

16.
Previously, we reported that the phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor tricyclodecan-9-yl xanthogenate (D609) potentiates thapsigargin-induced Ca(2+) influx in human lymphocytes. In the present study we examined the effect of D609 on the thapsigargin-induced Na(+) entry. We found that the early phase of the thapsigargin-induced increase in the intracellular Na(+) concentration (approx. 1-2 min after stimulation) was attenuated after preincubation of lymphocytes with D609. By contrast, thapsigargin-induced Na(+) influx was not affected in the presence butan-1-ol, which inhibits phosphatidylcholine-specific phospholipase D (PC-PLD). The thapsigargin-induced Na(+) influx could be mimicked by PC-PLC exogenously added to the lymphocyte suspension, whereas addition of PC-PLD had no effect. In addition, thapsigargin stimulated formation of the physiological PC-PLC products, diacylglycerol. Cell-permeable diacylglycerol analogue, dioctanoyl-glycerol (DOG), produced time- and concentration-dependent increase in the intracellular Na(+) concentration. Both thapsigargin- and DOG-induced Na(+) increases were not affected in the presence of Na(+)/H(+) antiport inhibitor, HOE609, or Na(+)/Ca(2+) antiport inhibitor, dimethylthiourea, as well as in the presence of Co(2+) and Ni(2+), which block store-operated Ca(2+) entry. By contrast, markedly reduced thapsigargin- and DOG-induced Na(+) influx were noted in the presence of flufenamic acid, which blocks the non-selective cation current (I(CRANC)). In conclusion, our results suggest that diacylglycerol released due to the PC-PLC activation contributes to the thapsigargin-induced Na(+) entry.  相似文献   

17.
This study uses human alveolar macrophages to determine whether activation of a phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) is linked to activation of the p42/44 (ERK) kinases by LPS. LPS-induced ERK kinase activation was inhibited by tricyclodecan-9-yl xanthogenate (D609), a relatively specific inhibitor of PC-PLC. LPS also increased amounts of diacylglycerol (DAG), and this increase in DAG was inhibited by D609. LPS induction of DAG was, at least in part, derived from PC hydrolysis. Ceramide was also increased in LPS-treated alveolar macrophages, and this increase in ceramide was inhibited by D609. Addition of exogenous C2 ceramide or bacterial-derived sphingomyelinase to alveolar macrophages increased ERK kinase activity. LPS also activated PKC zeta, and this activation was inhibited by D609. LPS-activated PKC zeta phosphorylated MAP kinase kinase, the kinase directly upstream of the ERK kinases. LPS-induced cytokine production (RNA and protein) was also inhibited by D609. As an aggregate, these studies support the hypothesis that one way by which LPS activates the ERK kinases is via activation of PC-PLC and that activation of a PC-PLC is an important component of macrophage activation by LPS.  相似文献   

18.
A complex phospholipid from bovine vitreous body with a strong Ca(2+)-mobilizing activity has been recently isolated to homogeneity by our group. In this work, a sequential analysis of its transmembrane signaling pathway has been undertaken to characterize the intracellular mechanisms responsible for the Ca(2+) rise. The results show that this phospholipid induces, in a dose-dependent manner (ED(50) of around 0.25 microgram/ml), a Ca(2+) mobilization from inositol 1,4,5-trisphosphate-insensitive intracellular stores, with no participation of extracellular Ca(2+). Upon repeated administration, it shows no signs of autologous desensitization, does not induce heterologous desensitization of the L-alpha-lysophosphatidic acid (LPA) receptor but is desensitized by the previous administration of LPA. The Ca(2+)-mobilizing activity requires a membrane protein, is blocked after preincubation of the cells with pertussis toxin and phorbol esters, as well as by U73122 (an inhibitor of phospholipases C/D), R59022 (a diacylglycerol kinase inhibitor), and D609 (which inhibits phosphatidylcholine-specific phospholipase C). Upon administration of this phospholipid, the intracellular levels of phosphatidic acid (PA) rise with a time course that parallels that of the Ca(2+) mobilization, suggesting that PA could be responsible for this Ca(2+) signal. Exposure to AACOCF(3) (a specific inhibitor of phospholipase A(2)) does not modify the Ca(2+) rise, ruling out the possibility that the PA generated could be further converted to LPA by the action of phospholipase A(2). Based on the experimental data obtained, a signaling pathway involving a phosphatidylcholine-specific phospholipase C coupled to diacylglycerol kinase is proposed. This compound may represent a new class of bioactive lipids with a putative role in the physiology of the vitreous body.  相似文献   

19.
20.
Activation of protein kinase C (PKC) triggers cellular signals that inhibit Fas/CD95-induced cell death in Jurkat T-cells by poorly defined mechanisms. Previously, we have shown that one effect of PKC on Fas/CD95-dependent cell death occurs through inhibition of cell shrinkage and K(+) efflux (Gómez-Angelats, M., Bortner, C. D., and Cidlowski, J. A. (2000) J. Biol. Chem. 275, 19609-19619). Here we report that PKC alters Fas/CD95 signaling from the plasma membrane to the activation of caspases by exerting a profound action on survival/cell death decisions. Specific activation of PKC with 12-O-tetradecanoylphorbol-13-acetate or bryostatin-1 induced translocation of PKC from the cytosol to the membrane and effectively inhibited cell shrinkage and cell death triggered by anti-Fas antibody in Jurkat cells. In contrast, inhibition of classical PKC isotypes with G?6976 exacerbated the effect of Fas activation on both apoptotic volume decrease and cell death. PKC activation/inhibition did not affect anti-Fas antibody binding to the cell surface, intracellular levels of FADD (Fas-associated protein with death domain), or c-FLIP (cellular FLICE-like inhibitory protein) expression. However, processing/activation of both caspase-8 and caspase-3 and BID cleavage were markedly blocked upon PKC activation and, conversely, were augmented during PKC inhibition, suggesting a role for PKC upstream of caspase-8 processing and activation. Analysis of death-inducing signaling complex (DISC) formation was carried out to examine the influence of PKC on recruitment of both FADD and procaspase-8 to the Fas receptor. PKC activation blocked FADD recruitment and caspase-8 activation and thus DISC formation in both type I and II cells. In contrast, inhibition of classical PKCs promoted the opposite effect on the Fas pathway by rapidly increasing FADD recruitment, caspase-8 activation, and DISC formation. Together, these data show that PKC finely modulates Fas/CD95 signaling by altering the efficiency of DISC formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号