首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new fluorescent ribose-modified ATP analogue, 2'(3')-O-[6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoic]-ATP (NBD-ATP), was synthesized and its interaction with skeletal muscle myosin subfragment-1 (S-1) was studied. NBD-ATP was hydrolysed by S-1 at a rate and with divalent cation-dependence similar to those in the case of regular ATP. Skeletal HMM supported actin translocation using NBD-ATP and the velocity was slightly higher than that in the case of regular ATP. The addition of S1 to NBD-ATP resulted in quenching of NBD fluorescence. Recovery of the fluorescence intensity was noted after complete hydrolysis of NBD-ATP to NBD-ADP. The quenching of NBD-ATP fluorescence was accompanied by enhancement of intrinsic tryptophan fluorescence. These results suggested that the quenching of NBD-ATP fluorescence reflected the formation of transient states of ATPase. The formation of S-1.NBD-ADP.BeF(n) and S-1.NBD-ADP.AlF(4)(-) complexes was monitored by following changes in NBD fluorescence. The time-course of the formation fitted an exponential profile yielding rate constants of 7.38 x 10(-2) s(-1) for BeF(n) and 1.1 x 10(-3) s(-1) for AlF(4)(-). These values were similar to those estimated from the intrinsic fluorescence enhancement of trp due to the formation of S-1.ADP.BeF(n) or AlF(4)(-) reported previously by our group. Our novel ATP analogue seems to be applicable to kinetic studies on myosin.  相似文献   

2.
The amino-acid sequence of a short subfragment-2 in the amino-terminal portion of subfragment-2 (S-2) derived from adult chicken skeletal muscle myosin was completely determined. Peptides cleaved by cyanogen bromide and by lysyl endopeptidase of S-carboxymethylated S-2, and hydrolytic peptides obtained with trypsin or dilute acetic acid of larger CNBr fragments were isolated and sequenced. This region was composed of 257 amino-acid residues, and hydrophobic and charged residue repeat units were found highly conserved and with a periodicity in 7 or 28 residues. This sequence of the short S-2 fragment of chicken skeletal muscle myosin was compared with the sequence of chicken and rat embryonic skeletal muscle myosins, rabbit skeletal and rabbit cardiac muscle myosin (alpha-myosin heavy chain), and 95.3%, 86.8%, 89.9% and 94.2% sequence identities were observed, respectively.  相似文献   

3.
Smooth muscle contraction is controlled in part by the state of phosphorylation of myosin. A recently discovered actin and calmodulin-binding protein, named caldesmon, may also be involved in regulation of smooth muscle contraction. Caldesmon cross-links actin filaments and also inhibits actin-activated ATP hydrolysis by myosin, particularly in the presence of tropomyosin. We have studied the effect of caldesmon on the rate of hydrolysis of ATP by skeletal muscle myosin subfragment-1, a system in which phosphorylation of the myosin is not important in regulation. Caldesmon is a very effective inhibitor of ATP hydrolysis giving up to 95% inhibition. At low ionic strength (approximately 20 mM) this effect does not require smooth muscle tropomyosin, whereas at high ionic strength (approximately 120 mM) tropomyosin enhances the inhibitory activity of caldesmon at low caldesmon concentrations. Cross-linking of actin is not essential for inhibition of ATP hydrolysis to occur since at high ionic strength there is very little cross-linking as determined by a low speed sedimentation assay. Under all conditions examined, the decrease in the rate of ATP hydrolysis is accompanied by a decrease in the binding of myosin subfragment-1 to actin. Furthermore, caldesmon weakens the equilibrium binding of myosin subfragment-1 to actin in the presence of pyrophosphate. We conclude that caldesmon has a general weakening effect on the binding of skeletal muscle myosin subfragment-1 to actin and that this weakening in binding may be responsible for inhibition of ATP hydrolysis.  相似文献   

4.
5.
Although the complete amino-acid sequence of the short subfragment-2 (short S-2) and the partial sequence of the hinge region derived from adult chicken skeletal muscle myosin have been reported previously, the sequence of the N-terminal portion of subfragment-2 (S-2) and the connective portion between the above two regions could not be determined. In this study, the amino-acid sequence of these undetermined portions were completely sequenced. Furthermore, overlaps of cyanogen bromide (CNBr) peptides in the hinge region were also isolated and sequenced. Peptides obtained by hydrolysis with dilute formic acid and by digestion with lysyl endopeptidase of S-2 were purified and sequenced. These results established the complete amino-acid sequence of S-2 composed of 429 amino-acid residues. This sequence of adult chicken skeletal muscle myosin was compared with that of chicken embryonic skeletal muscle, chicken gizzard muscle and rabbit cardiac muscle myosin (alpha-myosin heavy chain) and shows degrees of 96%, 38% and 84% sequence identities, respectively. The frequency with which hydrophobic residues are present at position "a" in seven-residues repeats of the hinge region was markedly reduced when compared to the short S-2 sequence of the chicken skeletal muscle myosin.  相似文献   

6.
1. Purealin, a novel bioactive principle of a sea sponge Psammaplysilla purea, activated the superprecipitation of myosin B (natural actomyosin) from rabbit skeletal muscle. The maximum change in the turbidity increased with increasing purealin concentrations and was three times the control value in the presence of 50 microM purealin. 2. The ATPase activity of myosin B was also elevated to 160% of the control value by 10 microM purealin. On the other hand, purealin inhibited the myosin ATPase in the presence of 10 mM CaCl2 and 0.5 M KCl (Ca2+-ATPase), and the concentration for the half inhibition was 4 microM. 3. On the other hand, purealin activated the myosin ATPase in the presence of 5 mM EDTA and 0.5 M KCl (EDTA-ATPase). The maximum activation by 10 microM purealin was 160% of the control value. 4. Furthermore, similar results concerning the modification of ATPase activities by purealin were obtained in myosin subfragment-1 instead of myosin. 5. These results suggest that purealin activates the superprecipitation of myosin B by affecting the myosin heads directly. It is also an interesting observation that there is a correlation between the activities of the myosin EDTA-ATPase and actomyosin ATPase of myosin B.  相似文献   

7.
8.
Rovner AS  Fagnant PM  Trybus KM 《Biochemistry》2006,45(16):5280-5289
Regulatory light chain (RLC) phosphorylation activates smooth and non-muscle myosin II, but it has not been established if phosphorylation of one head turns on the whole molecule. Baculovirus expression and affinity chromatography were used to isolate heavy meromyosin (HMM) containing one phosphorylated and one dephosphorylated RLC (1-P HMM). Motility and steady-state ATPase assays indicated that 1-P HMM is nearly as active as HMM with two phosphorylated heads (2-P HMM). Single-turnover experiments further showed that both the dephosphorylated and phosphorylated heads of 1-P HMM can be activated by actin. Singly phosphorylated full-length myosin was also an active species with two cycling heads. Our results suggest that phosphorylation of one RLC abolishes the asymmetric inhibited state formed by dephosphorylated myosin [Liu, J., et al. (2003) J. Mol. Biol. 329, 963-972], allowing activation of both the phosphorylated and dephosphorylated heads. These findings help explain how smooth muscles are able to generate high levels of stress with low phosphorylation levels.  相似文献   

9.
A Persechini  J T Stull 《Biochemistry》1984,23(18):4144-4150
Purified rabbit skeletal muscle myosin is phosphorylated on one type of light-chain subunit (P-light chain) by calmodulin-dependent myosin light chain kinase and dephosphorylated by phosphoprotein phosphatase C. Analyses of the time courses of both phosphorylation and dephosphorylation of skeletal muscle myosin indicated that both reactions, involving at least 90% of the P-light chain, were kinetically homogeneous. These results suggest that phosphorylation and dephosphorylation of rabbit skeletal muscle myosin heads are simple random processes in contrast to the sequential phosphorylation mechanism proposed for myosin from gizzard smooth muscle. We also examined the effect of phosphorylation of rabbit skeletal muscle myosin on the actin-activated ATPase activity. We observed an apparent 2-fold decrease in the Km for actin, from about 6 microM to about 2.5 microM, with no significant effect on the Vmax (1.8s-1) in response to P-light-chain phosphorylation. There was no significant effect of phosphorylation on the ATPase activity of myosin alone (0.045 s-1). ATPase activation could be fully reversed by addition of phosphatase catalytic subunit. The relationship between the extents of P-light-chain phosphorylation and ATPase activation (at 3.5 microM actin and 0.6 microM myosin) was essentially linear. Thus, in contrast to results obtained with myosin from gizzard smooth muscle, these results suggest that cooperative interactions between the myosin heads do not play an important role in the activation process in skeletal muscle. Since the effect of P-light-chain phosphorylation is upon the Km for actin, it would appear to be associated with a significant activation of ATPase activity only at appropriate concentrations of actin and salt.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of divalent cations--Co2+, Cu2+, Mn2+ and Ni2+ (5 mM) on the activity of actomyosin complex ATPase and ATPase of subfragment-1 (S1,head) of myosin from smooth muscle of the uterus was studied. It has been shown that Co2+, Mn2+ and Ni2+ inhibited, while Cu2+ activates the enzyme activity of both actomyosin and myosin S1. Mg and Mn ions had practically no effect on the emission intensity of eosin Y associated with actomyosin, while one could observe the most marked suppression of emission of related fluorescent probe in the presence of Cu cations and less pronounced suppression in the presence of Co2+. In the presence of Mn, Co and Ni cations the average hydrodynamic diameter (HD) of actomyosin complex and of subfragment-1 of the smooth muscle of the uterus is virtually identical to the HD in the presence of Mg2+. In the presence of Cu cations there is a considerable (ten-fold) increase in the size of the protein particles that may be a result of their aggregation. The results obtained evidence for the significant changes in the structure and function of the actomyosin complex of the myometrium in the presence of heavy metals and allow us to assume that the target of the effect of these metals on the contractile proteins is a subfragment-1 of myosin, where the active site of ATPase and actin-binding sites are localized.  相似文献   

11.
Recently, by treating the head portion of skeletal myosin subfragment-1 (S1) with the bifunctional agent dibromobimane, we introduced an intramolecular covalent cross-link which resulted in the stabilisation of an internal loop in the heavy chain structure of the head [Mornet et al. (1984) Proc. Natl Acad. Sci. USA 82, 1658-1662]. In order to define the functional properties of this new S1 conformational state, we have first determined the experimental conditions for the optimum modification of S1 by dibromobimane. We finally settled on a 60% yield of cross-linked S1. Because the modification occurs between the 50-kDa and the 20-kDa tryptic heavy chain fragments which have been postulated to be involved in the interaction of native S1 with actin, we have investigated the association of dibromobimane-treated S1 with actin, using chemical cross-linking of their rigor complex with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linked species obtained were analyzed by polyacrylamide gel electrophoresis and compared with those known for unmodified S1. The carbodiimide-catalyzed linkage between actin and dibromobimane-modified S1 led to a singlet protein band migrating with an apparent molecular mass of 155 kDa, in contrast to the usual doublet bands of 175 kDa and 185 kDa produced with native S1. This result suggests that a change has occurred at the actin interface on the dibromobimane-treated S1 heavy chain. The covalent complex generated by carbodiimide cross-linking between actin and dibromobimane-modified S1 (27-kDa + 50-kDa + 20-kDa fragments) was submitted to chemical hydrolysis with hydroxylamine. The nature of the products identified is consistent with the conclusion that the internal freezing of the heavy chain structure by dibromobimane induces the loss of the ability to cross-linkage of the actin site on the 20-kDa domain but does not affect the conformation of the second site on the 50-kDa segment, which becomes the unique actin region cross-linkable by actin.  相似文献   

12.
Incubation of rabbit skeletal myosin with an extract of light chain kinase plus ATP phosphorylated the L2 light chain and modified the steady state kinetics of the actomyosin ATPase. With regulated actin, the ATPase activity of phosphorylated myosin (P-myosin) was 35 to 181% greater than that of unphosphorylated myosin when assayed with 0.05 to 5 micro M Ca2+. Phosphorylation had no effect on the Ca2+ concentration required for half-maximal activity, but it did increase the ATPase activity at low Ca2+. With pure actin, the percentage of increase in the actomyosin ATPase activity correlated with the percentage of phosphorylation of myosin. Steady state kinetic analyses of the actomyosin system indicated that 50 to 82% phosphorylation of myosin decreased significantly the Kapp of actin for myosin with no significant effect on the Vmax. Phosphorylaton of heavy meromyosin similarly modified the steady state kinetics of the acto-heavy meromyosin system. Both the K+/EDTA- and Mg-ATPase activities of P-myosin and phosphorylated heavy meromyosin were within normal limits indicating that phosphorylaiion had not altered significantly the hydrolytic site. Phosphatase treatment of P-myosin decreased both the level of phosphorylation of L2 and the actomyosin ATPase activity to control levels for unphosphorylated myosin. It is concluded levels for unphosphorylated myosin. It is concluded from these results that the ability of P-myosin to modify the steady state kinetics of the actomyosin ATPase was: 1) specific for phosphorylation; 2) independent of the thin filament regulatory proteins.  相似文献   

13.
Antibody was prepared against the 25,000-dalton tryptic fragment of subfragment-1 from skeletal muscle myosin. The antibody was found to inhibit the Mg2+-ATPase activity and the initial P1-burst of the ATPase. The antibody suppressed the ATP-induced fluorescence enhancement of S-1, though it did not suppress the binding of ATP to S-1. The acto-S-1 ATPase activity was also inhibited by the antibody. These results suggest that there is a site in the 25K fragment region responsible for the transition of the myosin-ATP complex to another high energy complex.  相似文献   

14.
In the presence of ATP and absence of Ca2+, muscle crossbridges have either MgATP or MgADP.Pi bound at the active site (S. B. Marston and R. T. Tregear, Nature [Lond.], 235:22:1972). The behavior of these myosin adenosine triphosphate (M.ATP) crossbridges, both in relaxed skinned rabbit psoas and frog semitendinosus fibers, was analyzed. At very low ionic strength, T = 5 degrees C, mu = 20 mM, these crossbridges spend a large fraction of the time attached to actin. In rabbit, the attachment rate constants at low salt are 10(4) - 10(5) s-1, and the detachment rate constants are approximately 10(4) s-1. When ionic strength is increased up to physiological values by addition of 140 mM potassium propionate, the major effect is a weakening of the crossbridge binding constant approximately 30-40-fold. This effect occurs because of a large decrease, approximately 100-fold, in the crossbridge attachment rate constants. The detachment rate constants decrease only 2-3-fold. The effect of ionic strength on crossbridge binding in the fiber is very similar to the effect of ionic strength on the binding of myosin subfragment-1 to unregulated actin in solution. Thus, the effect of increasing ionic strength in fibers appears to be a direct effect on crossbridge binding rather than an effect on troponin-tropomyosin. The finding that crossbridges with ATP bound at the active site can and do attach to actin over a wide range of ionic strengths strongly suggests that troponin-tropomyosin keeps a muscle relaxed by blocking a step subsequent to crossbridge attachment. Thus, rather than troponin-tropomyosin serving to keep a muscle relaxed by inhibiting attachment, it seems quite possible that the main way in which troponin-tropomyosin regulates muscle activity is by preventing the weakly-binding relaxed crossbridges from going on through the crossbridge cycle into more strongly-binding states.  相似文献   

15.
The dependence of the onset and course of turbidity changes ( superprecipitation) induced by ATP were studied in a natural actomyosin suspension with the dephosphorylated and phosphorylated forms of light chains (LC2) of myosin. It was found that the onset and time course of the changes in turbidity of the natural actomyosin suspension are strongly dependent on the (phosphorylated and dephosphorylated) form of these chains of myosin. The ATPase activity of actomyosin with phosphorylated LC2 was lower and the half-time for achieving maximal turbidity of actomyosin suspension after addition of ATP was higher than that of actomyosin with dephosphorylated LC2. Natural actomyosin preparations contain endogenous light-chain kinase and phosphatase. The changes of turbidity induced by ATP in the natural actomyosin suspension are greatly diminished in the presence of phosphate. Thiophosphorylation of LC2 of myosin leads to a decrease of the extent of superprecipitation of natural actomyosin. The release of [32P]phosphate from actomyosin containing [32P]ATP-phosphorylated LC2 of myosin increases with increased turbidity of actomyosin suspension. The change of the form LC2 as a kind of additional myosin-linked regulation of superprecipitation is discussed.  相似文献   

16.
17.
Local melting within the subfragment-2 region of activated rabbit skeletal glycerinated muscle fibers has been investigated over the temperature range 5 to 37 degrees C, using an enzyme (chymotrypsin)-probe method. The cleavage rates were determined from the time-course of formation of digestion products by electrophoresis on sodium dodecyl sulfate-containing polyacrylamide gels. We found the cleavage sites to be localized in a restricted region Mr = 64,000 to 90,000/polypeptide chain, measured from the C terminus of the myosin rod (the subfragment-2 hinge domain). The cleavage rate constant for activated muscle fibers in the presence of an ATP-regenerating system was about 100 times larger at each temperature than that for rigor or for relaxed muscle fibers and showed a marked increase in magnitude with increasing temperature. Comparative plots of the apparent rate-constant for cleavage within the subfragment-2 hinge domain and the isometric force generated by active fibers versus MgATP concentration gave closely similar profiles suggesting a strong positive correlation. Thus, there appears to be a close coupling between the conformational transition within the subfragment-2 hinge domain and contractile force when the cross-bridges undergo cycling.  相似文献   

18.
From comparative studies of the association with polymeric actin of the bifunctional species heavy meromyosin and its monofunctional constituents, information about the relative freedom of these paired elements can be derived. An isotherm for the former binding process is presented which involves, as an experimentally determinable parameter, the local concentration of a second segment after the first of a pair is attached to the lattice. From combined data for these two association reactions a value of 10−4 M is obtained for this quantity. The large degree of segmental flexibility reported for the free heavy meromyosin is still manifested in the association with actin.  相似文献   

19.
A three-dimensional image of the "rigor" complex of actin and chymotryptic myosin subfragment-1 was reconstituted from electron micrographs of negatively stained specimens. Data went out to 20 A radially and 26 A axially. The reconstituted images allowed us to deduce the angle between the major axis of the main part of myosin subfragment-1 and the axis of the actin helix. The subfragment-1 molecules were attached to the actin filament in a configuration in which they were tilted by only about 15 degrees from the plane perpendicular to the axis of the actin helix. The implication of the smaller tilt angle than the commonly accepted value is discussed.  相似文献   

20.
The CNBr fragments of the hinge region in the carboxyterminal portion of long subfragment-2 derived from adult chicken pectoralis muscle myosin were isolated and sequenced by conventional methods. The alignment of these fragments was deduced from the homology of their sequences with those of other myosins, so that the sequence of the hinge region consisting of 127 amino-acid residues was determined. A comparison of this sequence with that of chicken embryonic skeletal muscle, chicken gizzard muscle and rabbit cardiac muscle (alpha-myosin) shows degrees of 95%, 36% and 82% sequence identities, respectively. Furthermore, the frequency with which hydrophobic residues are present at position "a" in seven-residues repeats of this region was significantly lower than the other portions of the rod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号