首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-drug-resistance protein (P-glycoprotein) turns out to be an ATP-hydrolysing transmembrane pump that increases the resistance of cells in which it is expressed by actively extruding toxic chemicals. The baffling question is how does the pump know which chemicals to extrude? Common features among its substrates are still elusive. The question raised here concerns the relationship between this pump and that known for many years as capable of extruding glutathionyl and cysteinyl S-conjugates of xenobiotics. Are excreted drugs conjugated before excretion? Does the multi-drug-resistance pump recognize a simple chemical tag put on xenobiotics by a family of transferase enzymes?  相似文献   

2.
A previously uncharacterized gene in Neosartorya fischeri was cloned and expressed in Escherichia coli. It was found to encode a β-glucosidase (NfBGL1) distinguishable from other BGLs by its high turnover of p-nitrophenyl β-d-glucopyranoside (pNPG). Molecular determinants for the substrate recognition of NfBGL1 were studied through an initial screening of residues by sequence alignment, a second screening by homology modeling and subsequent site-directed mutagenesis to alter individual screened residues. A conserved amino acid, E445, in the substrate binding pocket of wild-type NfBGL1 was identified as an important residue affecting substrate affinity. Replacement of E445 with amino acids other than aspartate significantly decreased the catalytic efficiency (kcat/Km) of NfBGL1 towards pNPG, mainly through decreased binding affinity. This was likely due to the disruption of hydrogen bonding between the substrate and the carboxylate oxygen of the residue at position 445. Density functional theory (DFT) based studies suggested that an acidic amino acid at position 445 raises the substrate affinity of NfBGL1 through hydrogen bonding. The residue E445 is completely conserved indicating that this position can be considered as a crucial determinant for the substrate binding among GHs tested.  相似文献   

3.
γ-Glutamyl transpeptidase (GGT) is a two-substrate enzyme that plays a central role in glutathione metabolism and is a potential target for drug design. GGT catalyzes the cleavage of γ-glutamyl donor substrates and the transfer of the γ-glutamyl moiety to an amine of an acceptor substrate or water. Although structures of bacterial GGT have revealed details of the protein-ligand interactions at the donor site, the acceptor substrate site is relatively undefined. The recent identification of a species-specific acceptor site inhibitor, OU749, suggests that these inhibitors may be less toxic than glutamine analogues. Here we investigated the donor and acceptor substrate preferences of Bacillus anthracis GGT (CapD) and applied computational approaches in combination with kinetics to probe the structural basis of the enzyme's substrate and inhibitor binding specificities and compare them with human GGT. Site-directed mutagenesis studies showed that the R432A and R520S variants exhibited 6- and 95-fold decreases in hydrolase activity, respectively, and that their activity was not stimulated by the addition of the l-Cys acceptor substrate, suggesting an additional role in acceptor binding and/or catalysis of transpeptidation. Rat GGT (and presumably HuGGT) has strict stereospecificity for L-amino acid acceptor substrates, while CapD can utilize both L- and D-acceptor substrates comparably. Modeling and kinetic analysis suggest that R520 and R432 allow two alternate acceptor substrate binding modes for L- and D-acceptors. R432 is conserved in Francisella tularensis, Yersinia pestis, Burkholderia mallei, Helicobacter pylori and Escherichia coli, but not in human GGT. Docking and MD simulations point toward key residues that contribute to inhibitor and acceptor substrate binding, providing a guide to designing novel and specific GGT inhibitors.  相似文献   

4.
In the ant genus Diacamma, all workers eclose from their cocoons with little clublike thoracic appendages, called gemmae. Whether these gemmae are mutilated determines individual behaviour, and ultimately reproductive role, in two of the three species examined. The gemmae are covered with sensory hairs, which probably serve a mechanoreceptive function. The sensory afferents arising from these hairs were stained and traced into the central nervous system (CNS). They feature widely distributed collaterals invading all three thoracic ganglia as well as the suboesophageal and the second abdominal ganglia. The multisegmental arborization pattern of the gemma afferents is very similar to that of wing-hair afferents of other ants (queens and males) or other insects in general. This implies that gemmae and wings are homologous structures. We discuss the morphology of the gemma afferents with respect to their possible involvement in the behavioural changes associated with mutilation. The neuronal processing may be modulated by (1) the decrease of sensory input onto interneurons (suggested by the afferents' extensive arborizations); or (2) by the effect of neuromodulatory substances (suggested by the finding that terminals occur within the cell body rind of the ganglion).  相似文献   

5.
RB family members are post-transductionally regulated proteins and phosphorylation at Ser/Thr residues leads to their gradual inactivation. Cyclin/cdk complexes are mainly responsible for the regulation of these pocket proteins, which is crucial for release of E2F factor. Despite the fact that E2F release is a phosphorylation-dependent process, it is still not evident how phosphorylation physically determines the shift from the active to the inactive feature of RB molecules. We would like to put forward the hypothesis that Pin1 is involved in RB proteins phosphorylation and E2F release, suggesting an additional post-translational level of control on this family of molecules.  相似文献   

6.
Proteinases perform many beneficial functions that are essential to life, but they are also dangerous and must be controlled. Here we focus on one of the control mechanisms: the ubiquitous presence of protein proteinase inhibitors. We deal only with a subset of these: the standard mechanism, canonical protein inhibitors of serine proteinases. Each of the inhibitory domains of such inhibitors has one reactive site peptide bond, which serves all the cognate enzymes as a substrate. The reactive site peptide bond is in a combining loop which has an identical conformation in all inhibitors and in all enzyme-inhibitor complexes. There are at least 18 families of such inhibitors. They all share the conformation of the combining loops but each has its own global three-dimensional structure. Many three-dimensional structures of enzyme-inhibitor complexes were determined. They are frequently used to predict the conformation of substrates in very short-lived enzyme-substrate transition state complexes. Turkey ovomucoid third domain and eglin c have a Leu residue at P(1). In complexes with chymotrypsin, these P(1) Leu residues assume the same conformation. The relative free energies of binding of P(1) Leu (relative to either P(1) Gly or P(1) Ala) are within experimental error, the same for complexes of turkey ovomucoid third domain, eglin c, P(1) Leu variant of bovine pancreatic trypsin inhibitor and of a substrate with chymotrypsin. Therefore, the P(1) Leu conformation in transition state complexes is predictable. In contrast, the conformation of P(1) Lys(+) is strikingly different in the complexes of Lys(18) turkey ovomucoid third domain and of bovine pancreatic trypsin inhibitor with chymotrypsin. The relative free energies of binding are also quite different. Yet, the relative free energies of binding are nearly identical for Lys(+) in turkey ovomucoid third domain and in a substrate, thus allowing us to know the structure of the latter. Similar reasoning is applied to a few other systems.  相似文献   

7.
The interaction of thiamine diphosphate (ThDP) with transketolase (TK) involves at least two stages: [formula: see text] During the first stage, an inactive intermediate complex (TK...ThDP) is formed, which is then transformed into a catalytically active holoenzyme (TK* - ThDP). The second stage is related to conformational changes of the protein. In the preceding publication (Esakova, O. A., Meshalkina, L. E., Golbik, R., Hübner, G., and Kochetov, G. A. Eur. J. Biochem. 2004, 271, 4189 - 4194) we reported that the affinity of ThDP for TK considerably increases in the presence of the donor substrate, which may be a mechanism whereby the activity of the enzyme is regulated under the conditions of the coenzyme deficiency. Here, we demonstrate that the substrate affects the stage of the reverse conformational transition, characterized by the constant k(-1): in the presence of the substrate, its value is decreased several fold, whereas K(d) and k(+1) remain unchanged.  相似文献   

8.
α-Isopropylmalate synthase (α-IPMS) catalyzes the metal-dependent aldol reaction between α-ketoisovalerate (α-KIV) and acetyl-coenzyme A (AcCoA) to give α-isopropylmalate (α-IPM). This reaction is the first committed step in the biosynthesis of leucine in bacteria. α-IPMS is homodimeric, with monomers consisting of (β/α)(8) barrel catalytic domains fused to a C-terminal regulatory domain, responsible for binding leucine and providing feedback regulation for leucine biosynthesis. In these studies, we demonstrate that removal of the regulatory domain from the α-IPMS enzymes of both Neisseria meningitidis (NmeIPMS) and Mycobacterium tuberculosis (MtuIPMS) results in enzymes that are unable to catalyze the formation of α-IPM, although truncated NmeIPMS was still able to slowly hydrolyze AcCoA. The lack of catalytic activity of these truncation variants was confirmed by complementation studies with Escherichia coli cells lacking the α-IPMS gene, where transformation with the plasmids encoding the truncated α-IPMS enzymes was not able to rescue α-IPMS activity. X-ray crystal structures of both truncation variants reveal that both proteins are dimeric and that the catalytic sites of the proteins are intact, although the divalent metal ion that is thought to be responsible for activating substrate α-KIV is displaced slightly relative to its position in the substrate-bound, wild-type structure. Isothermal titration calorimetry and WaterLOGSY nuclear magnetic resonance experiments demonstrate that although these truncation variants are not able to catalyze the reaction between α-KIV and AcCoA, they are still able to bind the substrate α-KIV. It is proposed that the regulatory domain is crucial for ensuring protein dynamics necessary for competent catalysis.  相似文献   

9.
Applied Microbiology and Biotechnology - Carbohydrate-active enzyme discovery is often not accompanied by experimental validation, demonstrating the need for techniques to analyze substrate...  相似文献   

10.
Summary The genusSternopygus, believed to reflect ancestral traits of gymnotiform electric fish, is closely related to the more modern genusEigenmannia (Mago-Leccia 1978; Fink and Fink 1981).Sternopygus is the only known genus of electric fish that does not perform a jamming avoidance response (JAR) to minimize the potentially detrimental effects of signal interference between discharging neighbors (Bullock et al. 1972, 1975), and its ability to electrolocate objects is rather immune to jamming (Matsubara and Heiligenberg 1978).By studying the responses of midbrain neurons to stimulus regimes effective in eliciting the JAR inEigenmannia, we found thatSternopygus has neurons capable of discriminating the sign of the difference frequency between interfering electric organ discharges (EODs). These sign-selective neurons, which are believed to be important elements in the control of the JAR inEigenmannia, may, therefore, fulfill a more general function in the detection of moving objects and conspecifics but could potentially be assembled for the evolution of a JAR inSternopygus. The relative immunity to jamming in this genus may result, in part, from a stronger reliance upon the ampullary electrosensory system which operates in the DC and low-frequency range, outside the EOD spectrum of these fish.Abbreviations AM amplitude modulation - Df frequency difference - EOD electric organ discharge - JAR jamming avoidance response  相似文献   

11.
12.
The substrate specificity of the enzyme endo-α-N-acetyl-D-galactosaminidase from Diplococcus pneumonia was re-examined using bovine submaxillary mucin and remodelled antifreeze glycoprotein as substrates. Incubation with desialylated bovine submaxillary mucin, which contains six O-linked core types, indicated that the disaccharide Galβ1-3GalNAc, which is present in very small amount, was the only glycan released, while the disaccharide GlcNAcβ1-3GalNAc, which is the major structure present, and other disaccharides, were not released. To test whether the core disaccharide Galβ1-3GalNAc with sialic acid linked α2-3 to the Gal or linked α2-6 to the GalNAc was released, the enzyme was incubated with remodelled antifreeze glycoprotein containing (1) [3H]NeuAcα2-3Galβ1-3GalNAc and (2) Galβ1-3[[14C]NeuAcα2-6]GalNAc as substrates. No NeuAc-containing trisaccharide was released. These results serve to clarify the doubts of many researchers regarding the activity of this enzyme on some newly-described core types and on sialylated substrates. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
1. Biosynthetic sodium (N-acetyl-N-phenylhydroxylamine NO-beta-d-glucosid)-uronate is hydrolysed completely by purified mouse urinary beta-glucuronidase into the products N-acetyl-N-phenylhydroxylamine and glucuronic acid. The hydrolysis is inhibited by saccharo-(1-->4)-lactone. These results not only confirm the identity and purity of the substrate but also establish it as a substrate for beta-glucuronidase. 2. Mammalian and bacterial beta-glucuronidase preparations hydrolysed the substrate at a rate one-fifth of that for (phenolphthalein beta-d-glucosid)uronic acid under the optimum conditions of hydrolysis for each source. 3. The pH optimum is 4.1 and the Michaelis constant, K(m), is 3.3x10(-4)m with purified mouse urinary beta-glucuronidase as the enzyme source acting on the NO-beta-d-glucosiduronic acid. The aglycone after extraction into chloroform was quantitatively determined spectrophotometrically at its absorption maximum (256mmu). 4. The hydrolysis was studied as a function of time and temperature. 5. From a consideration of the chemical and enzymic properties of this NO-beta-d-glucosiduronic acid it is possible to suggest its catabolism in vivo.  相似文献   

14.
Bacillus?megaterium IAM 1030 (Bacillus sp. JCM 20016) possesses four d-glucose 1-dehydrogenase isozymes (BmGlcDH-I, -II, -III and -IV) that belong to the short-chain dehydrogenase/reductase superfamily. The BmGlcDHs are currently used for a clinical assay to examine blood glucose levels. Of these four isozymes, BmGlcDH-IV has relatively high thermostability and catalytic activity, but the disadvantage of its broad substrate specificity remains to be overcome. Here, we describe the crystal structures of BmGlcDH-IV in ligand-free, NADH-bound and β-d-glucose-bound forms to a resolution of 2.0??. No major conformational differences were found among these structures. The structure of BmGlcDH-IV in complex with β-d-glucose revealed that the carboxyl group at the C-terminus, derived from a neighboring subunit, is inserted into the active-site pocket and directly interacts with β-d-glucose. A site-directed mutagenic study showed that destabilization of the BmGlcDH-IV C-terminal region by substitution with more bulky and hydrophobic amino acid residues greatly affects the activity of the enzyme, as well as its thermostability and substrate specificity. Of the six mutants created, the G259A variant exhibited the narrowest substrate specificity, whilst retaining comparable catalytic activity and thermostability to the wild-type enzyme. Database The atomic coordinates and structure factor amplitudes for BmGlcDH-IV in ligand-free form, in complex with NADH, in complex with d-glucose, G259A mutant in ligand-free form, and A258F mutant in complex with d-glucose and NADH were deposited in the RCSB Protein Data Bank (http://www.rcsb.org) under the accession codes 3AUS, 3AUT, 3AUU, 3AY6 and 3AY7, respectively Structured digital abstract ? BmGlcDH-IV?and?BmGlcDH-IV?bind?by?x-ray crystallography?(View Interaction:?1,?2).  相似文献   

15.
Ghosh KS  Pande A  Pande J 《Biochemistry》2011,50(16):3279-3281
α-Crystallin is a small heat shock protein and molecular chaperone. Binding of Cu2+ and Zn2+ ions to α-crystallin leads to enhanced chaperone function. Sequestration of Cu2+ by α-crystallin prevents metal-ion mediated oxidation. Here we show that binding of human γD-crystallin (HGD, a natural substrate) to human αA-crystallin (HAA) is inversely related to the binding of Cu2+/Zn2+ ions: The higher the amount of bound HGD, the lower the amount of bound metal ions. Thus, in the aging lens, depletion of free HAA will not only lower chaperone capacity but also lower Cu2+ sequestration, thereby promoting oxidation and cataract.  相似文献   

16.
17.
ω-Transaminase (ω-TA) is the only naturally occurring enzyme allowing asymmetric amination of ketones for production of chiral amines. The active site of the enzyme was proposed to consist of two differently sized substrate binding pockets and the stringent steric constraint in the small pocket has presented a significant challenge to production of structurally diverse chiral amines. To provide a mechanistic understanding of how the (S)-specific ω-TA from Paracoccus denitrificans achieves the steric constraint in the small pocket, we developed a free energy analysis enabling quantification of individual contributions of binding and catalytic steps to changes in the total activation energy caused by structural differences in the substrate moiety that is to be accommodated by the small pocket. The analysis exploited kinetic and thermodynamic investigations using structurally similar substrates and the structural differences among substrates were regarded as probes to assess how much relative destabilizations of the reaction intermediates, i.e. the Michaelis complex and the transition state, were induced by the slight change of the substrate moiety inside the small pocket. We found that ≈80% of changes in the total activation energy resulted from changes in the enzyme-substrate binding energy, indicating that substrate selectivity in the small pocket is controlled predominantly by the binding step (KM) rather than the catalytic step (kcat). In addition, we examined the pH dependence of the kinetic parameters and the pH profiles of the KM and kcat values suggested that key active site residues involved in the binding and catalytic steps are decoupled. Taken together, these findings suggest that the active site residues forming the small pocket are mainly engaged in the binding step but not significantly involved in the catalytic step, which may provide insights into how to design a rational strategy for engineering of the small pocket to relieve the steric constraint toward bulky substituents.  相似文献   

18.
1. To investigate the kinetics of ophidian l-amino acid oxidase, V and Km were determined for phenylalanines that were substituted in every ring position with groups of various size and reactivity, and for a few ring-substituted tryptophans and histidines. The venom of one representative from each of three major classes of poisonous snakes, Naja melanoleuca, Vipera russelli and Crotalus adamanteus, served as a source of the ophidian l-amino acid oxidase. Both crude and crystalline enzyme from the venom of C. adamanteus were tested. 2. The introduction of a benzene ring into glycine and alanine caused some increase of V and a very marked depression of Km. 3. With the exception of fluorine, residues in the ortho position of phenylalanine led to a decrease of V. The rates induced by various substitutions follow the pattern: metaparaortho. Within the halogen series, the effects become more pronounced with increasing atomic number. 4. Ring substitution in heterocyclic amino acids also affected the V values markedly. For methyl-substituted tryptophans the pattern was: 5-methyl ≥ 6-methyl ≥ 4-methyl. In a few instances ring substitution accounts for a considerable elevation of V, as shown for β-quinol-4-ylalanine and its 6-methoxy derivative. 5. The kinetic constants appear to be unaffected by relatively high concentrations of the corresponding d-amino acids. 6. A general principle that permits a uniform interpretation of a vast body of information is suggested. It is based on the assumption that most substrates form not only eutopic but also dystopic complexes with the enzyme. The latter, in contrast with the former, do not permit the formation of reaction products. K values for eutopic and dystopic complexes are computed. Similar concepts have been presented to elucidate the action of α-chymotrypsin (Hein & Niemann, 1962) and of monoamine oxidase.  相似文献   

19.
Rhomboid proteases constitute a family of intramembrane serine proteases ubiquitous in all forms of life. They differ in many aspects from their soluble counterparts. We applied molecular dynamics (MD) computational approach to address several challenging issues regarding their catalytic mechanism: How does the exosite of GlpG rhomboid protease control the kinetics efficiency of substrate hydrolysis? What is the mechanism of inhibition by the non‐competitive peptidyl aldehyde inhibitors bound to the GlpG rhomboid active site (AS)? What is the underlying mechanism that explains the hypothesis that GlpG rhomboid protease is not adopted for the hydrolysis of short peptides that do not contain a transmembrane domain (TMD)? Two fundamental features of rhomboid catalysis, the enzyme recognition and discrimination of substrates by TMD interactions in the exosite, and the concerted mechanism of non‐covalent pre‐catalytic complex to covalent tetrahedral complex (TC) conversion, provide answers to these mechanistic questions.  相似文献   

20.
Baeyer–Villiger monooxygenase-catalysed reactions are attractive for industrial processes. Here we report on expanding the substrate scope of phenylacetone monooxygenase (PAMO). In order to introduce activity on alicyclic ketones in PAMO, we generated and screened a library of 1,500 mutants. Based on recently published structures of PAMO and its mutants, we selected previously uncharacterised positions as well as known hot-spots to be targeted by focused mutagenesis. We were able to mutate 11 positions in a single step by using the OmniChange method for the mutant library generation. Screening of the library using a phosphate-based activity detection method allowed identification of a quadruple mutant (P253F/G254A/R258M/L443F) active on cyclopentanone. The substrate scope of this mutant is extended to several aliphatic ketones while activity on aromatic compounds typical for PAMO was preserved. Moreover, the mutant is as thermostable as PAMO. Our results demonstrate the power of screening structure-inspired, focused mutant libraries for creating Baeyer–Villiger monooxygenases with new specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号