共查询到20条相似文献,搜索用时 0 毫秒
1.
Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress 总被引:10,自引:0,他引:10
Wang X Phelan SA Forsman-Semb K Taylor EF Petros C Brown A Lerner CP Paigen B 《The Journal of biological chemistry》2003,278(27):25179-25190
Reactive oxygen species, especially hydrogen peroxide, are important in cellular signal transduction. However, excessive amounts of these species damage tissues and cells by oxidizing virtually all important biomolecules. Peroxiredoxin 6 (PRDX6) (also called antioxidant protein 2, or AOP2) is a novel peroxiredoxin family member whose function in vivo is unknown. Through immunohistochemistry, we have determined that the PRDX6 protein was widely expressed in every tissue examined, most abundantly in epithelial cells. It was found in cytosol, but not in membranes, organelles, and nuclei fractions. Prdx6 mRNA was also expressed in every tissue examined. The widespread expression of Prdx6 suggested that its functions were quite important. To determine these functions, we generated Prdx6-targeted mutant (Prdx6-/-) mice, confirmed the gene disruption by Southern blots, PCR, RT-PCR, Western blots, and immunohistochemistry, and compared the effects of paraquat, hydrogen peroxide, and t-butyl hydroperoxide on Prdx6-/- and wild-type (Prdx6+/+) macrophages, and of paraquat on Prdx6-/- and Prdx6+/+ mice. Prdx6-/- macrophages had higher hydrogen peroxide levels, and lower survival rates; Prdx6-/- mice had significantly lower survival rates, more severe tissue damage, and higher protein oxidation levels. Additionally, there were no differences in the mRNA expression levels of other peroxiredoxins, glutathione peroxidases, catalase, superoxide dismutases, thioredoxins, and glutaredoxins between normal Prdx6-/- and Prdx6+/+ mice and those injected with paraquat. Our study provides in vivo evidence that PRDX6 is a unique non-redundant antioxidant that functions independently of other peroxiredoxins and antioxidant proteins. 相似文献
2.
Iba K Durkin ME Johnsen L Hunziker E Damgaard-Pedersen K Zhang H Engvall E Albrechtsen R Wewer UM 《Molecular and cellular biology》2001,21(22):7817-7825
Tetranectin is a plasminogen-binding, homotrimeric protein belonging to the C-type lectin family of proteins. Tetranectin has been suggested to play a role in tissue remodeling, due to its ability to stimulate plasminogen activation and its expression in developing tissues such as developing bone and muscle. To test the functional role of tetranectin directly, we have generated mice with a targeted disruption of the gene. We report that the tetranectin-deficient mice exhibit kyphosis, a type of spinal deformity characterized by an increased curvature of the thoracic spine. The kyphotic angles were measured on radiographs. In 6-month-old normal mice (n = 27), the thoracic angle was 73 degrees +/- 2 degrees, while in tetranectin-deficient 6-month-old mice (n = 35), it was 93 degrees +/- 2 degrees (P < 0.0001). In approximately one-third of the mutant mice, X-ray analysis revealed structural changes in the morphology of the vertebrae. Histological analysis of the spines of these mice revealed an apparently asymmetric development of the growth plate and of the intervertebral disks of the vertebrae. In the most advanced cases, the growth plates appeared disorganized and irregular, with the disk material protruding through the growth plate. Tetranectin-null mice had a normal peak bone mass density and were not more susceptible to ovariectomy-induced osteoporosis than were their littermates as determined by dual-emission X-ray absorptiometry scanning. These results demonstrate that tetranectin plays a role in tissue growth and remodeling. The tetranectin-deficient mouse is the first mouse model that resembles common human kyphotic disorders, which affect up to 8% of the population. 相似文献
3.
Acquired resistance to the action of insulin to stimulate glucose transport in skeletal muscle is associated with obesity and promotes the development of type 2 diabetes. In skeletal muscle, insulin resistance can result from high levels of circulating fatty acids that disrupt insulin signalling pathways. However, the severity of insulin resistance varies greatly among obese people. Here we postulate that this variability might reflect differences in levels of lipid-droplet proteins that promote the sequestration of fatty acids within adipocytes in the form of triglycerides, thereby lowering exposure of skeletal muscle to the inhibitory effects of fatty acids. 相似文献
4.
Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia 总被引:3,自引:0,他引:3
下载免费PDF全文

Nieuwenhuis E Motoyama J Barnfield PC Yoshikawa Y Zhang X Mo R Crackower MA Hui CC 《Molecular and cellular biology》2006,26(17):6609-6622
Hedgehog (Hh) signaling plays pivotal roles in tissue patterning and development in Drosophila melanogaster and vertebrates. The Patched1 (Ptc1) gene, encoding the Hh receptor, is mutated in nevoid basal cell carcinoma syndrome, a human genetic disorder associated with developmental abnormalities and increased incidences of basal cell carcinoma (BCC) and medulloblastoma (MB). Ptc1 mutations also occur in sporadic forms of BCC and MB. Mutational studies with mice have verified that Ptc1 is a tumor suppressor. We previously identified a second mammalian Patched gene, Ptc2, and demonstrated its distinct expression pattern during embryogenesis, suggesting a unique role in development. Most notably, Ptc2 is expressed in an overlapping pattern with Shh in the epidermal compartment of developing hair follicles and is highly expressed in the developing limb bud, cerebellum, and testis. Here, we describe the generation and phenotypic analysis of Ptc2(tm1/tm1) mice. Our molecular analysis suggests that Ptc2(tm1) likely represents a hypomorphic allele. Despite the dynamic expression of Ptc2 during embryogenesis, Ptc2(tm1/tm1) mice are viable, fertile, and apparently normal. Interestingly, adult Ptc2(tm1/tm1) male animals develop skin lesions consisting of alopecia, ulceration, and epidermal hyperplasia. While functional compensation by Ptc1 might account for the lack of a strong mutant phenotype in Ptc2-deficient mice, our results suggest that normal Ptc2 function is required for adult skin homeostasis. 相似文献
5.
Gawenis LR Ledoussal C Judd LM Prasad V Alper SL Stuart-Tilley A Woo AL Grisham C Sanford LP Doetschman T Miller ML Shull GE 《The Journal of biological chemistry》2004,279(29):30531-30539
The AE2 Cl-/HCO3- exchanger is expressed in numerous cell types, including epithelial cells of the kidney, respiratory tract, and alimentary tract. In gastric epithelia, AE2 is particularly abundant in parietal cells, where it may be the predominant mechanism for HCO3- efflux and Cl- influx across the basolateral membrane that is needed for acid secretion. To investigate the hypothesis that AE2 is critical for parietal cell function and to assess its importance in other tissues, homozygous null mutant (AE2(-/-)) mice were prepared by targeted disruption of the AE2 (Slc4a2) gene. AE2(-/-) mice were emaciated, edentulous (toothless), and exhibited severe growth retardation, and most of them died around the time of weaning. AE2(-/-) mice exhibited achlorhydria, and histological studies revealed abnormalities of the gastric epithelium, including moderate dilation of the gastric gland lumens and a reduction in the number of parietal cells. There was little evidence, however, that parietal cell viability was impaired. Ultrastructural analysis of AE2(-/-) gastric mucosa revealed abnormal parietal cell structure, with severely impaired development of secretory canaliculi and few tubulovesicles but normal apical microvilli. These results demonstrate that AE2 is essential for gastric acid secretion and for normal development of secretory canalicular and tubulovesicular membranes in mouse parietal cells. 相似文献
6.
7.
Schröder H 《The Journal of nutritional biochemistry》2007,18(3):149-160
The prevalence of obesity has grown to an alarming level of at least 300 million people worldwide. Additionally, a diabetes epidemic is underway, with an estimate of 217 million people with diabetes worldwide. There are many links between excessive body weight and type 2 diabetes, and one common and fundamental cause of both epidemics is an unhealthy diet. Research to identify and promote diets that protect individuals from obesity and type 2 diabetes is urgently needed. The Mediterranean diet, a concept developed in the 1950s, refers to dietary habits of individuals from the Mediterranean basin. The Mediterranean diet is an eating pattern that successfully combines pleasant taste and positive health effects. The Mediterranean diet does not stand for a homogenous and exclusive model among the Mediterranean basin population but rather represents a set of healthy dietary habits, including high consumption of vegetables and fresh fruits and the use of olive oil as the main source of fat. Evidence from epidemiological studies supports a protective effect of this dietary pattern on weight gain and the development of type 2 diabetes. Several mechanistic explanations link characteristic components of the Mediterranean diet with obesity and type 2 diabetes. This review will discuss potential mechanisms by which the Mediterranean diet protects individuals from both diseases. 相似文献
8.
Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis 总被引:6,自引:0,他引:6
Zhang GX Xiao BG Bai XF van der Meide PH Orn A Link H 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(7):3775-3781
IFN-gamma can either adversely or beneficially affect certain experimental autoimmune diseases. To study the role of IFN-gamma in the autoantibody-mediated experimental autoimmune myasthenia gravis (EAMG), an animal model of myasthenia gravis in humans, IFN-gammaR-deficient (IFN-gammaR-/-) mutant C57BL/6 mice and congenic wild-type mice were immunized with Torpedo acetylcholine receptor (AChR) plus CFA. IFN-gammaR-/- mice exhibited significantly lower incidence and severity of muscle weakness, lower anti-AChR IgG Ab levels, and lower Ab affinity to AChR compared with wild-type mice. Passive transfer of serum from IFN-gammaR-/- mice induced less muscular weakness compared with serum from wild-type mice. In contrast, numbers of lymph node cells secreting IFN-gamma and of those expressing IFN-gamma mRNA were strongly augmented in the IFN-gammaR-/- mice, reflecting a failure of negative feedback circuits. Cytokine studies by in situ hybridization revealed lower levels of lymphoid cells expressing AChR-reactive IL-1beta and TNF-alpha mRNA in AChR + CFA-immunized IFN-gammaR-/- mice compared with wild-type mice. No differences were found for AChR-reactive cells expressing IL-4, IL-10, or TGF-beta mRNA. These results indicate that IFN-gamma promotes systemic humoral responses in EAMG by up-regulating the production and the affinity of anti-AChR autoantibodies, thereby contributing to susceptibility to EAMG in C57BL/6-type mice. 相似文献
9.
Iwakiri Y Cadelina G Sessa WC Groszmann RJ 《American journal of physiology. Gastrointestinal and liver physiology》2002,283(5):G1074-G1081
Systemic vasodilation is the initiating event of the hyperdynamic circulatory state, being most likely triggered by increased levels of vasodilators, primarily nitric oxide (NO). Endothelial NO synthase (eNOS) is responsible for this event. We tested the hypothesis that gene deletion of eNOS and inducible NOS (iNOS) may inhibit the development of the hyperdynamic circulatory state in portal hypertensive animals. To test this hypothesis, we used mice lacking eNOS (eNOS-/-) or eNOS/iNOS (eNOS/iNOS-/-) genes. A partial portal vein ligation (PVL) was used to induce portal hypertension. Sham-operated animals were used as a control. Hemodynamic characteristics were tested 2 wk after surgery. As opposed to our hypothesis, PVL also caused significant reduction in peripheral resistance in eNOS-/- compared with sham animals (0.33 +/- 0.02 vs. 0.41 +/- 0.03 mmHg. min x kg body wt x ml(-1); P = 0.04) and in eNOS/iNOS-/- animals with PVL compared with that of the sham-operated group (0.44 +/- 0.02 vs. 0.54 +/- 0.04; P = 0.03). This demonstrates that, despite gene deletion of eNOS, the knockout mice developed hyperdynamic circulation. Compensatory vasodilator molecule(s) are upregulated in place of NO in the systemic and splanchnic circulation in portal hypertensive animals. 相似文献
10.
Cruciani-Guglielmacci C Vincent-Lamon M Rouch C Orosco M Ktorza A Magnan C 《American journal of physiology. Endocrinology and metabolism》2005,288(1):E148-E154
To evaluate the relationship between the development of obesity, nervous system activity, and insulin secretion and action, we tested the effect of a 2-mo high-fat diet in rats (HF rats) on glucose tolerance, glucose-induced insulin secretion (GIIS), and glucose turnover rate compared with chow-fed rats (C rats). Moreover, we measured pancreatic and hepatic norepinephrine (NE) turnover, as assessment of sympathetic tone, and performed hypothalamic microdialysis to quantify extracellular NE turnover. Baseline plasma triglyceride, free fatty acid, insulin, and glucose concentrations were similar in both groups. After 2 days of diet, GIIS was elevated more in HF than in C rats, whereas plasma glucose time course was similar. There was a significant increase in basal pancreatic NE level of HF rats, and a twofold decrease in the fractional turnover constant was observed, indicating a change in sympathetic tone. In ventromedian hypothalamus of HF rats, the decrease in NE extracellular concentration after a glucose challenge was lower compared with C rats, suggesting changes in overall activity. After 7 days, insulin hypersecretion persisted, and glucose intolerance appeared. Later (2 mo), there was no longer insulin hypersecretion, whereas glucose intolerance worsened. At all times, HF rats also displayed hepatic insulin resistance. On day 2 of HF diet, GIIS returned to normal after treatment with oxymetazoline, an alpha(2A)-adrenoreceptor agonist, thus suggesting the involvement of a low sympathetic tone in insulin hypersecretion in response to glucose in HF rats. In conclusion, the HF diet rapidly results in an increased GIIS, at least in part related to a decreased sympathetic tone, which can be the first step of a cascade of events leading to impaired glucose homeostasis. 相似文献
11.
《The Journal of nutritional biochemistry》2014,25(5):540-548
In the intracellular secretory network, nascent proteins are shuttled from the endoplasmic reticulum to the Golgi by transport vesicles requiring Sar1b, a small GTPase. Mutations in this key enzyme impair intestinal lipid transport and cause chylomicron retention disease. The main aim of this study was to assess whether Sar1b overexpression under a hypercaloric diet accelerated lipid production and chylomicron (CM) secretion, thereby inducing cardiometabolic abnormalities. To this end, we generated transgenic mice overexpressing human Sar1b (Sar1b+/+) using pBROAD3-mcs that features the ubiquitous mouse ROSA26 promoter. In response to a high-fat diet (HFD), Sar1b+/+ mice displayed significantly increased body weight and adiposity compared with Sar1b+/+ mice under the same regimen or with wild-type (WT) mice exposed to chow diet or HFD. Furthermore, Sar1b+/+ mice were prone to liver steatosis as revealed by significantly elevated hepatic triglycerides (TG) and cholesterol in comparison with WT animals. They also exhibited augmented levels of plasma TG along with alterations in fatty acid composition. Concomitantly, they showed susceptibility to develop insulin insensitivity and they responded abnormally to oral glucose tolerance test. Finally, Sar1b+/+ mice that have been treated with Triton WR-1330 (to inhibit TG catabolism) and orotic acid (to block secretion of very low-density lipoprotein by the liver) responded more efficiently to fat meal tests as reflected by the rise in plasma TG and CM concentrations, indicating exaggerated intestinal fat absorption. These results suggest that Sar1b+/+ under HFD can elicit cardiometabolic traits as revealed by incremental weight gain, fat deposition, dyslipidemia, hepatic steatosis, insulin insensitivity and intestinal fat absorption. 相似文献
12.
Chakir H Campos-Neto A Mojibian M Webb JR 《Microbes and infection / Institut Pasteur》2003,5(4):241-249
The cytokine IL-12 plays a critical role in inducing the production of IFN-gamma from T and NK cells and in the polarization of T cells towards the Th1 phenotype. IL-12 is comprised of two subunits (IL-12p40 and IL-12p35) that together form the biologically active p70 molecule, and IL-12 functions via binding to a heterodimeric receptor (IL-12Rbeta1 and IL-12Rbeta2). Previous studies utilizing mice deficient for either the IL-12 cytokine or the IL-12-induced signaling molecule STAT4 have established a critical role for IL-12 during infection with Leishmania major. However, these studies warrant careful re-interpretation in light of the recent discovery of the IL-12-related cytokine, IL-23, which utilizes the IL-12p40 chain in combination with an IL-12p35-related molecule, called p19, and a receptor comprised of the IL-12Rbeta1 chain plus a unique chain referred to as IL-23R. We analyzed the course of L. major infection in mice deficient for the IL-12-specific IL-12Rbeta2 subunit in order to assess the role of IL-12 signaling without disruption of the IL-23 pathway. After infection with L. major, IL-12Rbeta2KO mice of a resistant background (C57Bl/6) developed large cutaneous lesions similar to those developed by susceptible BALB/c mice. Draining lymph node cells from L. major-infected IL-12Rbeta2KO mice released the Th2 cytokines IL-4 and IL-5 after in vitro stimulation with Leishmania lysate but were completely devoid of IFN-gamma, consistent with a default towards a strong parasite-specific Th2 response. L. major-infected IL-12Rbeta2KO mice were also devoid of parasite-specific IgG2a antibodies, and interestingly, their footpad lesions ulcerated earlier than those of susceptible BALB/c mice. 相似文献
13.
Serum and gene expression levels of leptin and adiponectin in rats susceptible or resistant to diet-induced obesity 总被引:1,自引:0,他引:1
Pérez-Echarri N Pérez-Matute P Martínez JA Marti A Moreno-Aliaga MJ 《Journal of physiology and biochemistry》2005,61(2):333-342
The aim of the present study was to identify the role of leptin and adiponectin in the development of resistance or susceptibility to diet-induced obesity in rats. For this purpose, male Wistar rats were fed with standard laboratory diet (control group) or cafeteria diet. After 15 days, two groups of rats with different response respect to the cafeteria diet were identified, and were assigned as diet-induced obesity (DIO) and diet resistant (DR) rats. The high-fat diet induced a very significant increase in both body and fat mass weight in DIO group. However, DR rats, gained even less weight than control-fed animals. Food intake was increased in cafeteria-fed rats (both DIO and DR) in comparison to control group; but hyperphagia was higher in DIO rats. In addition, feed efficiency (the ratio of weight gained to calories consumed) was significantly decreased in DR as compared to DIO rats. Regarding leptin, a significant increase in both adipose tissue gene expression and serum levels was observed in DIO rats in comparison with other groups (control and DR). A significant increase in both adiponectin circulating levels and adipose tissue mRNA expression was also observed in DIO animals as compared with the other groups. These data suggest that the susceptibility to obesity of DIO rats might be secondary, at least in part, to an earlier development of leptin resistance, which could lead to alterations in food intake (hyperphagia) and energetic metabolism. However, neither changes in leptin or adiponectin seem to be involved in the adaptive mechanisms that confer resistance to high fat intake. 相似文献
14.
Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection
下载免费PDF全文

Martina Y Marcucci KT Cherqui S Szabo A Drysdale T Srinivisan U Wilson CA Patience C Salomon DR 《Journal of virology》2006,80(7):3135-3146
Porcine endogenous retrovirus (PERV) is considered one of the major risks in xenotransplantation. No valid animal model has been established to evaluate the risks associated with PERV transmission to human patients by pig tissue xenotransplantation or to study the potential pathogenesis associated with PERV infection. In previous work we isolated two genes encoding functional human PERV receptors and proved that introduction of these into mouse fibroblasts allowed the normally nonpermissive mouse cells to become productively infected (T. A. Ericsson, Y. Takeuchi, C. Templin, G. Quinn, S. F. Farhadian, J. C. Wood, B. A. Oldmixon, K. M. Suling, J. K. Ishii, Y. Kitagawa, T. Miyazawa, D. R. Salomon, R. A. Weiss, and C. Patience, Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). In the present study we created mice transgenic for human PERV-A receptor 2 (HuPAR-2). After inoculation of transgenic animals with infectious PERV supernatants, viral DNA and RNA were detected at multiple time points, indicating productive replication. This establishes the role of HuPAR-2 in PERV infection in vivo; in addition, these transgenic mice represent a new model for determining the risk of PERV transmission and potential pathogenesis. These mice also create a unique opportunity to study the immune response to PERV infection and test potential therapeutic or preventative modalities. 相似文献
15.
Background
Obesity and type 2 diabetes (T2DM) are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM.Methodology/Principal Findings
Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD)-induced reduction in lysophosphatidylcholine (LPC) levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients.Conclusion
Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile. 相似文献16.
Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin 总被引:15,自引:0,他引:15
Burkart V Wang ZQ Radons J Heller B Herceg Z Stingl L Wagner EF Kolb H 《Nature medicine》1999,5(3):314-319
Human type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta cells during islet inflammation. Cytokines and reactive radicals released during this process contribute to beta-cell death. Here we show that mice with a disrupted gene coding for poly (ADP-ribose) polymerase (PARP-/- mice) are completely resistant to the development of diabetes induced by the beta-cell toxin streptozocin. The mice remained normoglycemic and maintained normal levels of total pancreatic insulin content and normal islet ultrastructure. Cultivated PARP-/- islet cells resisted streptozocin-induced lysis and maintained intracellular NAD+ levels. Our results identify NAD+ depletion caused by PARP activation as the dominant metabolic event in islet-cell destruction, and provide information for the development of strategies to prevent the progression or manifestation of the disease in individuals at risk of developing type 1 diabetes. 相似文献
17.
Glycine receptors are ligand-gated chloride channels that mediate inhibitory neurotransmission in the adult nervous system. During development, glycine receptor alpha 2 (GlyRalpha2) is expressed in the retina, in the spinal cord, and throughout the brain. Within the cortex, GlyRalpha2 is expressed in immature cells and these receptors have been shown to be active and excitatory. In the developing retina, inhibition of glycine receptor activity prevents proper rod photoreceptor development. These data suggest that GlyRalpha2, the developmentally expressed glycine receptor, may play an important role in neuronal development. We have generated mice with a targeted deletion of glycine receptor alpha 2 (Glra2). Although these mice lack expression of GlyRalpha2, no gross morphological or molecular alterations were observed in the nervous system. In addition, the cerebral cortex does not appear to require glycine receptor activity for proper development, as Glra2 knockout mice did not show any electrophysiological responses to glycine. 相似文献
18.
Althage MC Ford EL Wang S Tso P Polonsky KS Wice BM 《The Journal of biological chemistry》2008,283(26):18365-18376
19.
T J Visser E Kaptein H Y Aboul-Enein 《Biochemical and biophysical research communications》1992,189(3):1362-1367
Type I iodothyronine deiodinase (ID-I) is a selenoenzyme, which is important for the conversion of the prohormone thyroxine (T4) to the bioactive thyroid hormone 3,3',5-triiodothyronine (T3). 2-Thiouracil derivatives inhibit ID-I by interaction with an enzyme form generated during catalysis. We have now tested the potential inhibitory effects of the selenocompounds 6-methyl- (MSU) and 6-propyl-2-selenouracil (PSU) in comparison with their thioanalogs 6-methyl- (MTU) and 6-propyl-2-thiouracil (PTU) on rat liver ID-I activity using 3,3',5-triiodothyronine (reverse T3, rT3) as substrate and dithiothreitol (DTT) as cofactor. All compounds showed dose-dependent inhibition of ID-I with IC50 values of 1, 0.5, 0.4 and 0.2 microM for MTU, MSU, PTU and PSU, respectively. Our results further suggest that these inhibitions are uncompetitive with substrate and competitive with cofactor. The high potency of selenouracils may be due to reaction with a substrate-induced enzyme selenenyl iodide intermediate under formation of a stable enzyme-selenouracil diselenide. 相似文献
20.
Kolokoltsova OA Yun NE Poussard AL Smith JK Smith JN Salazar M Walker A Tseng CT Aronson JF Paessler S 《Journal of virology》2010,84(24):13063-13067
Junin virus (JUNV) causes a highly lethal human disease, Argentine hemorrhagic fever. Previous work has demonstrated the requirement for human transferrin receptor 1 for virus entry, and the absence of the receptor was proposed to be a major cause for the resistance of laboratory mice to JUNV infection. In this study, we present for the first time in vivo evidence that the disruption of interferon signaling is sufficient to generate a disease-susceptible mouse model for JUNV infection. After peripheral inoculation with virulent JUNV, adult mice lacking alpha/beta and gamma interferon receptors developed disseminated infection and severe disease. 相似文献