首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Members of the ezrin-radixin-moesin (ERM) family of proteins have been found to serve as linkers between membrane proteins and the F-actin cytoskeleton in many organisms. We used RNA interference (RNAi) approach to assay ERM proteins of the Caenorhabditis elegans genome for a possible involvement in apical junction (AJ) assembly or positioning. We identify erm-1 as the only ERM protein required for development and show, by multiple RNA interference, that additional four-point one, ezrin-radixin-moesin (FERM) domain-containing proteins cannot compensate for the depletion of ERM-1. ERM-1 is expressed in most if not all cells of the embryo at low levels but is upregulated in epithelia, like the intestine. ERM-1 protein co-localizes with F-actin and the intermediate filament protein IFB-2 at the apical cell cortex. ERM-1 depletion results in intestine-specific phenotypes like lumenal constrictions or even obstructions. This phenotype arises after epithelial polarization of intestinal cells and can be monitored using markers of the apical junction. We show that the initial steps of epithelial polarization in the intestine are not affected in erm-1(RNAi) embryos but the positioning of apical junction proteins to an apico-lateral position arrests prematurely or fails, resulting in multiple obstructions of the intestinal flow after hatching. Mechanistically, this phenotype might be due to an altered apical cytoskeleton because the apical enrichment of F-actin filaments is lost specifically in the intestine. ERM-1 is the first protein of the apical membrane domain affecting junction remodelling in C. elegans. ERM-1 interacts genetically with the catenin-cadherin system but not with the DLG-1 (Discs large)-dependent establishment of the apical junction.  相似文献   

2.
The Caenorhabditis elegans intestine is a simple and accessible model system to analyze the mechanism of junction assembly. In comparison to Drosophila and vertebrates, the C. elegans apical junction is remarkable because a single electron-dense structure is implicated in complex processes such as epithelial tightness, vectorial transport and cell adhesion. Here we present evidence in support of a heterogeneous molecular assembly of junctional proteins found in Drosophila and vertebrate epithelia associated with different junctions or regions of the plasma membrane. In addition, we show that molecularly diverse complexes participate in different aspects of epithelial maturation in the C. elegans intestine. DLG-1 (Discs large) acts synergistically with the catenin-cadherin complex (HMP-1-HMP-2-HMR-1) and the Ezrin-Radixin-Moesin homolog (ERM-1) to ensure tissue integrity of the intestinal tube. The correct localization of DLG-1 itself depends on AJM-1, a coiled-coil protein. Double depletion of HMP-1 (alpha-catenin) and LET-413 (C. elegans homolog of Drosophila Scribble) suggests that the catenin-cadherin complex is epistatic to LET-413, while additional depletion of subapically expressed CRB-1 (Crumbs) emphasizes a role of CRB-1 concerning apical junction formation in the C. elegans intestine.  相似文献   

3.
The nematode Caenorhabditis elegans is an excellent model system in which to study in vivo organization and function of the intermediate filament (IF) system for epithelial development and function. Using a transgenic ifb-2::cfp reporter strain, a mutagenesis screen was performed to identify mutants with aberrant expression patterns of the IF protein IFB-2, which is expressed in a dense network at the subapical endotube just below the microvillar brush border of intestinal cells. Two of the isolated alleles (kc2 and kc3) were mapped to the same gene, which we refer to as ifo-1 (intestinal filament organizer). The encoded polypeptide colocalizes with IF proteins and F-actin in the intestine. The apical localization of IFO-1 does not rely on IFB-2 but is dependent on LET-413, a basolateral protein involved in apical junction assembly and maintenance of cell polarity. In mutant worms, IFB-2 and IFC-2 are mislocalized in cytoplasmic granules and accumulate in large aggregates at the C. elegans apical junction (CeAJ) in a DLG-1-dependent fashion. Electron microscopy reveals loss of the prominent endotube and disordered but still intact microvilli. Semiquantitative fluorescence microscopy revealed a significant decrease of F-actin, suggesting a general role of IFO-1 in cytoskeletal organization. Furthermore, downregulation of the cytoskeletal organizer ERM-1 and the adherens junction component DLG-1, each of which leads to F-actin reduction on its own, induces a novel synthetic phenotype in ifo-1 mutants resulting in disruption of the lumen. We conclude that IFO-1 is a multipurpose linker between different cytoskeletal components of the C. elegans intestinal terminal web and contributes to proper epithelial tube formation.  相似文献   

4.
Cellular junctions are critical for intercellular communication and for the assembly of cells into tissues. Cell junctions often consist of tight junctions, which form a permeability barrier and prevent the diffusion of lipids and proteins between cell compartments, and adherens junctions, which control the adhesion of cells and link cortical actin filaments to attachment sites on the plasma membrane. Proper tight junction formation and cell polarity require the function of membrane-associated guanylate kinases (MAGUKs) that contain the PDZ protein-protein interaction domain. In contrast, less is known about how adherens junctions are assembled. Here we describe how the PDZ-containing protein DLG-1 is required for the proper formation and function of adherens junctions in Caenorhabditis elegans. DLG-1 is a MAGUK protein that is most similar in sequence to mammalian SAP97, which is found at both synapses of the CNS, as well as at cell junctions of epithelia. DLG-1 is localized to adherens junctions, and DLG-1 localization is mediated by an amino-terminal domain shared with SAP97 but not found in other MAGUK family members. DLG-1 recruits other proteins and signaling molecules to adherens junctions, while embryos that lack DLG-1 fail to recruit the proteins AJM-1 and CPI-1 to adherens junctions. DLG-1 is required for the proper organization of the actin cytoskeleton and for the morphological elongation of embryos. In contrast to other proteins that have been observed to affect adherens junction assembly and function, DLG-1 is not required to maintain cell polarity. Our results suggest a new function for MAGUK proteins distinct from their role in cell polarity.  相似文献   

5.
Disassembly of the epithelial apical junctional complex (AJC), composed of the tight junction (TJ) and adherens junction (AJ), is important for normal tissue remodeling and pathogen-induced disruption of epithelial barriers. Using a calcium depletion model in T84 epithelial cells, we previously found that disassembly of the AJC results in endocytosis of AJ/TJ proteins. In the present study, we investigated the role of the actin cytoskeleton in disassembly and internalization of the AJC. Calcium depletion induced reorganization of apical F-actin into contractile rings. Internalized AJ/TJ proteins colocalized with these rings. Both depolymerization and stabilization of F-actin inhibited ring formation and disassembly of the AJC, suggesting a role for actin filament turnover. Actin reorganization was accompanied by activation (dephosphorylation) of cofilin-1 and its translocation to the F-actin rings. In addition, Arp3 and cortactin colocalized with these rings. F-actin reorganization and disassembly of the AJC were blocked by blebbistatin, an inhibitor of nonmuscle myosin II. Myosin IIA was expressed in T84 cells and colocalized with F-actin rings. We conclude that disassembly of the AJC in calcium-depleted cells is driven by reorganization of apical F-actin. Mechanisms of such reorganization involve cofilin-1-dependent depolymerization and Arp2/3-assisted repolymerization of actin filaments as well as myosin IIA-mediated contraction.  相似文献   

6.
In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis. Recombinant syndapin SH3 domains interacted with lacrimal acinar dynamin, neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and synaptojanin; their introduction by electroporation elicited remarkable accumulation of clathrin, accessory proteins, and coated pits at the apical plasma membrane. These SH3 domains also significantly (p 相似文献   

7.
We have developed an in vitro assay to study actin assembly at cadherin-enriched cell junctions. Using this assay, we demonstrate that cadherin-enriched junctions can polymerize new actin filaments but cannot capture preexisting filaments, suggesting a mechanism involving de novo synthesis. In agreement with this hypothesis, inhibition of Arp2/3-dependent nucleation abolished actin assembly at cell-cell junctions. Reconstitution biochemistry using the in vitro actin assembly assay identified α-actinin-4/focal segmental glomerulosclerosis 1 (FSGS1) as an essential factor. α-Actinin-4 specifically localized to sites of actin incorporation on purified membranes and at apical junctions in Madin-Darby canine kidney cells. Knockdown of α-actinin-4 decreased total junctional actin and inhibited actin assembly at the apical junction. Furthermore, a point mutation of α-actinin-4 (K255E) associated with FSGS failed to support actin assembly and acted as a dominant negative to disrupt actin dynamics at junctional complexes. These findings demonstrate that α-actinin-4 plays an important role in coupling actin nucleation to assembly at cadherin-based cell-cell adhesive contacts.  相似文献   

8.
Leishmania donovani promastigotes inhibit phagosome maturation and induce the accumulation of periphagosomal F-actin during the establishment of infection within macrophages. These events are mediated by the surface glycolipid lipophosphoglycan (LPG), but the underlying mechanisms remain to be elucidated. In this study, we addressed the role of the Rho-family GTPases RhoA, Rac1 and Cdc42 in the uptake of L. donovani promastigotes and in the accumulation of periphagosomal F-actin. Confocal microscopy analyses revealed that association of both Rac1 and RhoA to phagosomes containing L. donovani promastigotes was independent of the presence of LPG. In contrast, Cdc42 and proteins required for F-actin assembly (Arp2/3, WASP, Myosin, alpha-actinin) were retained on phagosomes in a LPG-dependent manner. Expression of the RhoA inhibitor C3-transferase blocked the internalization of complement-opsonized promastigotes, whereas the dominant-negative Rac1N17 blocked the uptake of unopsonized promastigotes. The dominant-negative Cdc42N17 inhibited LPG-mediated phagosomal accumulation of F-actin and retention of Arp2/3 and Myosin. Thus, our data suggest that the effect of LPG on the accumulation of periphagosomal F-actin is the consequence of an abnormal retention or activation of Cdc42 at the phagosome.  相似文献   

9.
The correct assembly of junction components, such as E-cadherin and beta-catenin, into the zonula adherens is fundamental for the function of epithelia, both in flies and in vertebrates. In C. elegans, however, the cadherin-catenin system is not essential for general adhesion, raising the question as to the genetic basis controlling junction morphogenesis in nematodes. Here we show that dlg-1, the C. elegans homologue of the Drosophila tumour-suppressor gene discs-large, plays a crucial role in epithelial development. DLG-1 is restricted to adherens junctions of all embryonic epithelia, which contrasts with the localisation of the Drosophila and vertebrate homologues in septate and tight junctions, respectively. Proper localisation of DLG-1 requires the basolateral LET-413 protein, but is independent of the cadherin-catenin system. Embryos in which dlg-1 activity was eliminated by RNA-mediated interference fail to form a continuous belt of junction-associated antigens and arrest development. Loss of dlg-1 activity differentially affects localisation of proteins normally enriched apically to the zonula adherens. While the distribution of an atypical protein kinase C (PKC-3) and other cytoplasmic proteins (PAR-3, PAR-6) is not affected in dlg-1 (RNAi) embryos, the transmembrane protein encoded by crb-1, the C. elegans homologue of Drosophila crumbs, is no longer concentrated in this domain. In contrast to Drosophila, however, crb-1 and a second crb-like gene are not essential for epithelial development in C. elegans. Together the data indicate that several aspects of the spatial organisation of epithelial cells and its genetic control differ between flies, worms, and vertebrates, while others are conserved. The molecular nature of DLG-1 makes it a likely candidate to participate in the organisation of a protein scaffold that controls the assembly of junction components into the zonula adherens.  相似文献   

10.
The Arp2/3 complex regulates actin nucleation, which is critical for a wide range of cellular processes, such as cell polarity, cell locomotion, and endocytosis. In the present study, we investigated the possible roles of the Arp2/3 complex in porcine oocytes during meiotic maturation. Immunofluorescent staining showed the Arp2/3 complex to localize mainly to the cortex of porcine oocytes, colocalizing with actin. Treatment with an Arp2/3 complex specific inhibitor, CK666, resulted in a decrease in Arp2/3 complex localization at the oocyte cortex. The maturation rate of porcine oocytes decreased significantly after CK666 treatment, concomitant with the failure of cumulus cell expansion and oocyte polar body extrusion. The fluorescence intensity of F-actin decreased in the cytoplasm, and CK666 also disrupted actin cap formation. In summary, our results illustrate that the Arp2/3 complex is required for the meiotic maturation of porcine oocytes and that actin nucleation is critical for meiotic maturation.  相似文献   

11.
Epithelial cell junctions are essential for cell polarity, adhesion and morphogenesis. We have analysed VAB-9, a cell junction protein in Caenorhabditis elegans. VAB-9 is a predicted four-pass integral membrane protein that has greatest similarity to BCMP1 (brain cell membrane protein 1, a member of the PMP22/EMP/Claudin family of cell junction proteins) and localizes to the adherens junction domain of C. elegans apical junctions. Here, we show that VAB-9 requires HMR-1/cadherin for localization to the cell membrane, and both HMP-1/alpha-catenin and HMP-2/beta-catenin for maintaining its distribution at the cell junction. In vab-9 mutants, morphological defects correlate with disorganization of F-actin at the adherens junction; however, localization of the cadherin-catenin complex and epithelial polarity is normal. These results suggest that VAB-9 regulates interactions between the cytoskeleton and the adherens junction downstream of or parallel to alpha-catenin and/or beta-catenin. Mutations in vab-9 enhance adhesion defects through functional loss of the cell junction genes apical junction molecule 1 (ajm-1) and discs large 1 (dlg-1), suggesting that VAB-9 is involved in cell adhesion. Thus, VAB-9 represents the first characterized tetraspan adherens junction protein in C. elegans and defines a new family of such proteins in higher eukaryotes.  相似文献   

12.
Using a mutant hepatocyte cell line in which E-cadherin and beta-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking. It is shown that these hepatocytes retain the capacity to form functional tight junctions, develop full apical-basolateral cell polarity, and assemble a subapical cortical F-actin network, although with a noted delay and a defect in subsequent apical lumen remodeling. Interestingly, whereas hepatocytes typically target the plasma membrane protein dipeptidyl peptidase IV first to the basolateral surface, followed by its transcytosis to the apical domain, hepatocytes lacking E-cadherin-based adherens junctions target dipeptidyl peptidase IV directly to the apical surface. Basolateral surface-directed transport of other proteins or lipids tested was not visibly affected in hepatocytes lacking E-cadherin-based adherens junctions. Together, our data show that E-cadherin/beta-catenin-based adherens junctions are dispensable for tight junction formation and apical lumen biogenesis but not for apical lumen remodeling. In addition, we suggest a possible requirement for E-cadherin/beta-catenin-based adherens junctions with regard to the indirect apical trafficking of specific proteins in hepatocytes.  相似文献   

13.
The Arp2/3 complex is the only known nucleator of branched F-actin filaments. Work in cultured cells has established a wide array of functions for this complex in controlling cell migration, shape, and adhesion. However, loss of Arp2/3 complex function in tissues has yielded cell type–specific phenotypes. Here we report essential functions of the Arp2/3 complex in the intestinal epithelium. The Arp2/3 complex was dispensable for intestinal development, generation of cortical F-actin, and cell polarity. However, it played essential roles in vesicle trafficking. We found that in the absence of ArpC3, enterocytes had defects in the organization of the endolysosomal system. These defects were physiologically relevant, as transcytosis of IgG was disrupted, lipid absorption was perturbed, and neonatal mice died within days of birth. These data highlight the important roles of the Arp2/3 complex in vesicle trafficking in enterocytes and suggest that defects in cytoplasmic F-actin assembly by the Arp2/3 complex, rather than cortical pools, underlie many of the phenotypes seen in the mutant small intestine.  相似文献   

14.
In Con8 rat mammary epithelial tumor cells, the synthetic glucocorticoid dexamethasone stimulates the remodeling of the apical junction (tight and adherens junctions) and the transepithelial electrical resistance (TER), which reflects tight junction sealing. Indirect immunofluorescence revealed that dexamethasone induced the recruitment of endogenous Ras and the p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase to regions of cell-cell contact, concurrently with the stimulation of TER. Expression of dominant-negative RasN17 abolished the dexamethasone stimulation in TER, whereas, dexamethasone induced the reorganization of tight junction and adherens junction proteins, ZO-1 and beta-catenin, as well as F-actin, to precise regions of cell-cell contact in a Ras-independent manner. Confocal microscopy revealed that RasN17 and the p85 regulatory subunit of PI 3-kinase co-localized with ZO-1 and F-actin at the tight junction and adherens junction, respectively. Treatment with either of the PI 3-kinase inhibitors, wortmannin or LY294002, or the MEK inhibitor PD 098059, which prevents MAPK signaling, attenuated the dexamethasone stimulation of TER without affecting apical junction remodeling. Similar to dominant-negative RasN17, disruption of both Ras effector pathways using a combination of inhibitors abolished the glucocorticoid stimulation of TER. Thus, the glucocorticoiddependent remodeling of the apical junction and tight junction sealing can be uncoupled by their dependence on Ras and/or PI 3-kinase-dependent pathways, implicating a new role for Ras and PI 3-kinase cell signaling events in the steroid control of cell-cell interactions.  相似文献   

15.
The Arp2/3 complex, which nucleates actin filaments, comprises a stable assembly of seven-protein subunits including two actin-related proteins (Arp2 and Arp3). Previous work showed that Arp2/3 binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. In the present study, we show that the Arp2/3 complex is critical for cytokinesis during early embryonic development in porcine parthenotes. The Arp2/3 complex is concentrated at the cortex of each cell at the 1-, 2-, and 4-cell stages, and at the periphery at the morula stage. The amount of Arp2/3 significantly decreased at the blastocyst stage in parthenogenetically activated porcine embryos. Inhibition of the Arp2/3 complex in the pig embryos by the Arp2/3-specific inhibitor CK666 resulted in abnormal cell division, a decrease in developmental rate and total cell numbers, and an increase in the ratio of trophectoderm cell number to inner cell mass number in blastocyst-stage embryos. In addition, 4-cell stage embryos subjected to CK666 treatment exhibited significantly decreased expression of ZGA genes (Pou5f1, Sox2, and Nanog), suggesting that the Arp2/3 complex plays an important role in early porcine embryo development. Thus, our data demonstrate that the Arp2/3 complex is required for early embryonic development in pigs and appears to regulate the expression of pluripotency genes.  相似文献   

16.
Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of PRK2 does not block the initial formation of primordial junctions at nascent cell-cell contacts but does prevent their maturation into apical junctions. PRK2 is recruited to primordial junctions, and this localization depends on its C2-like domain. Rho binding is essential for PRK2 function and also facilitates PRK2 recruitment to junctions. Kinase-dead PRK2 acts as a dominant-negative mutant and prevents apical junction formation. We conclude that PRK2 is recruited to nascent cell-cell contacts through its C2-like and Rho-binding domains and promotes junctional maturation through a kinase-dependent pathway.  相似文献   

17.
18.
Listeria monocytogenes is a food-borne pathogen able to invade non-phagocytic cells. InlA, a L. monocytogenes surface protein, interacts with human E-cadherin to promote bacterial entry. L. monocytogenes internalization is a dynamic process involving co-ordinated actin cytoskeleton rearrangements and host cell membrane remodelling at the site of bacterial attachment. Interaction between E-cadherin and catenins is required to promote Listeria entry, and for the establishment of adherens junctions in epithelial cells. Although several molecular factors promoting E-cadherin-mediated Listeria internalization have been identified, the proteins regulating the transient actin polymerization required at the bacterial entry site are unknown. Here we show that the Arp2/3 complex acts as an actin nucleator during the InlA/E-cadherin-dependent internalization. Using a variety of approaches including siRNA, expression of dominant negative derivatives and pharmacological inhibitors, we demonstrate the crucial role of cortactin in the activation of the Arp2/3 complex during InlA-mediated entry. We also show the requirement of the small GTPase Rac1 and that of Src-tyrosine kinase activity to promote Listeria internalization. Together, these data suggest a model in which Src tyrosine kinase and Rac1 promote recruitment of cortactin and activation of Arp2/3 at Listeria entry site, mimicking events that occur during adherens junction formation.  相似文献   

19.
The WAVE/SCAR complex promotes actin nucleation through the Arp2/3 complex, in response to Rac signaling. We show that loss of WVE-1/GEX-1, the only C. elegans WAVE/SCAR homolog, by genetic mutation or by RNAi, has the same phenotype as loss of GEX-2/Sra1/p140/PIR121, GEX-3/NAP1/HEM2/KETTE, or ABI-1/ABI, the three other components of the C. elegans WAVE/SCAR complex. We find that the entire WAVE/SCAR complex promotes actin-dependent events at different times and in different tissues during development. During C. elegans embryogenesis loss of CED-10/Rac1, WAVE/SCAR complex components, or Arp2/3 blocks epidermal cell migrations despite correct epidermal cell differentiation. 4D movies show that this failure occurs due to decreased membrane dynamics in specific epidermal cells. Unlike myoblasts in Drosophila, epidermal cell fusions in C. elegans can occur in the absence of WAVE/SCAR or Arp2/3. Instead we find that subcellular enrichment of F-actin in epithelial tissues requires the Rac-WAVE/SCAR-Arp2/3 pathway. Intriguingly, we find that at the same stage of development both F-actin and WAVE/SCAR proteins are enriched apically in one epithelial tissue and basolaterally in another. We propose that temporally and spatially regulated actin nucleation by the Rac-WAVE/SCAR-Arp2/3 pathway is required for epithelial cell organization and movements during morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号