首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
During neurogenesis, complex networks of genes act sequentially to control neuronal differentiation. In the neural tube, the expression of Pax6, a paired-box-containing gene, just precedes the appearance of the first post-mitotic neurons. So far, its only reported function in the spinal cord is in specifying subsets of neurons. Here we address its possible function in controlling the balance between proliferation and commitment of neural progenitors. We report that increasing Pax6 level is sufficient to push neural progenitors toward cell cycle exit and neuronal commitment via Neurogenin 2 (Ngn2) upregulation. However, neuronal precursors maintaining Pax6(On) fail to perform neuronal differentiation. Conversely, turning off Pax6 function in these precursors is sufficient to provoke premature differentiation and the number of differentiated neurons depends of the amount of Pax6 protein. Moreover, we found that Pax6 expression involves negative feedback regulation by Ngn2 and this repression is critical for the proneural activity of Ngn2. We present a model in which the level of Pax6 activity first conditions the moment when a given progenitor will leave the cell cycle and second, the moment when a selected neuronal precursor will irreversibly differentiate.  相似文献   

4.
5.
6.
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.  相似文献   

7.
8.
9.
10.
11.
12.
We have studied the molecular basis of the Pax2 and Pax6 function in the establishment of visual system territories. Loss-of-function mutants have revealed crucial roles for Pax2 in the generation of the optic stalk and for Pax6 in the development of the optic cup. Ectopic expression of Pax6 in the optic stalk under control of Pax2 promoter elements resulted in a shift of the optic cup/optic stalk boundary indicated by the presence of retinal pigmented cells on the optic stalk. By studying mouse embryos at early developmental stages we detected an expansion of Pax2 expression domain in the Pax6(-/-) mutant and of Pax6 expression domain in the Pax2(-/-) embryo. These results suggest that the position of the optic cup/optic stalk boundary depends on Pax2 and Pax6 expression, hinting at a possible molecular interaction. Using gel shift experiments, we confirmed the presence of Pax2- and Pax6-binding sites on the retina enhancer of the Pax6 gene and on the Pax2 upstream control region, respectively. Co-transfection experiments revealed a reciprocal inhibition of Pax2 promoter/enhancer activity by Pax6 protein and vice versa. Based on our findings, we propose a model for Pax gene regulation that establishes the proper spatial regionalization of the mammalian visual system.  相似文献   

13.
We have examined the genetic mechanisms that regulate dorsal-ventral identity in the embryonic mouse telencephalon and, in particular, the specification of progenitors in the cerebral cortex and striatum. The respective roles of Pax6 and Gsh2 in cortical and striatal development were studied in single and double loss-of-function mouse mutants. Gsh2 gene function was found to be essential to maintain the molecular identity of early striatal progenitors and in its absence the ventral telencephalic regulatory genes Mash1 and Dlx are lost from most of the striatal germinal zone. In their place, the dorsal regulators, Pax6, neurogenin 1 and neurogenin 2 are found ectopically. Conversely, Pax6 is required to maintain the correct molecular identity of cortical progenitors. In its absence, neurogenins are lost from the cortical germinal zone and Gsh2, Mash1 and Dlx genes are found ectopically. These reciprocal alterations in cortical and striatal progenitor specification lead to the abnormal development of the cortex and striatum observed in Pax6 (small eye) and Gsh2 mutants, respectively. In support of this, double homozygous mutants for Pax6 and Gsh2 exhibit significant improvements in both cortical and striatal development compared with their respective single mutants. Taken together, these results demonstrate that Pax6 and Gsh2 govern cortical and striatal development by regulating genetically opposing programs that control the expression of each other as well as the regionally expressed developmental regulators Mash1, the neurogenins and Dlx genes in telencephalic progenitors.  相似文献   

14.
15.
16.
17.
18.
19.
The enteric nervous system (ENS) derives from migratory neural crest cells that colonize the developing gut tube, giving rise to an integrated network of neurons and glial cells, which together regulate important aspects of gut function, including coordinating the smooth muscle contractions of the gut wall. The absence of enteric neurons in portions of the gut (aganglionosis) is the defining feature of Hirschsprung’s disease (HSCR) and has been replicated in a number of mouse models. Mutations in the RET tyrosine kinase account for over half of familial cases of HSCR and mice mutant for Ret exhibit aganglionosis. RET exists in two main isoforms, RET9 and RET51 and studies in mouse have shown that RET9 is sufficient to allow normal development of the ENS. In the last several years, zebrafish has emerged as a model of vertebrate ENS development, having been supported by a number of demonstrations of conservation of gene function between zebrafish, mouse and human. In this study we further analyse the potential similarities and differences between ENS development in zebrafish, mouse and human. We demonstrate that zebrafish Ret is required in a dose-dependent manner to regulate colonization of the gut by neural crest derivatives, as in human. Additionally, we show that as in mouse and human, zebrafish ret is produced as two isoforms, ret9 and ret51. Moreover, we show that, as in mouse, the Ret9 isoform is sufficient to support colonization of the gut by enteric neurons. Finally, we identify zebrafish orthologues of genes previously identified to be expressed in the mouse ENS and demonstrate that these genes are expressed in the developing zebrafish ENS, thereby identifying useful ENS markers in this model organism. These studies reveal that the similarities between gene expression and gene function across vertebrate species is more extensive than previously appreciated, thus supporting the use of zebrafish as a general model for vertebrate ENS development and the use of zebrafish genetic screens as a way to identify candidate genes mutated in HSCR cases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号