首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Japanese encephalitis is a mosquito borne disease and is the leading cause of viral encephalitis in the Asia-Pacific area. The causative agent, Japanese encephalitis virus(JEV) can be phylogenetically classified into five genotypes based on nucleotide sequence. In recent years, genotype I(GI) has displaced genotype III(GIII) as the dominant lineage, but the mechanisms behind this displacement event requires elucidation. In an earlier study, we compared host variation over time between the two genotypes and observed that GI appears to have evolved to achieve more efficient infection in hosts in the replication cycle, with the tradeoff of reduced infectivity in secondary hosts such as humans. To further investigate this phenomenon, we collected JEV surveillance data on human cases and, together with sequence data, and generated genotype/case profiles from seven Asia-Pacific countries and regions to characterize the GI/GIII displacement event. We found that, when comprehensive and consistent vaccination and surveillance data was available, and the GIII to GI shift occurred within a well-defined time period, there was a statistically significant drop in JEV human cases. Our findings provide further support for the argument that GI is less effective in infecting humans, who represent a dead end host. However, experimental investigation is necessary to confirm this hypothesis. The study highlights the value of alternative approaches to investigation of epidemics, as well as the importance of effective data collection for disease surveillance and control.  相似文献   

2.
Wu Z  Xue Y  Wang B  Du J  Jin Q 《PloS one》2011,6(10):e26304
Japanese encephalitis virus (JEV), a neurotropic mosquito-borne flavivirus, causes acute viral encephalitis and neurologic disease with a high fatality rate in humans and a range of animals. Small interfering RNA (siRNA) is a powerful antiviral agent able to inhibit JEV replication. However, the high rate of genetic variability between JEV strains (of four confirmed genotypes, genotypes I, II, III and IV) hampers the broad-spectrum application of siRNAs, and mutations within the targeted sequences could facilitate JEV escape from RNA interference (RNAi)-mediated antiviral therapy. To improve the broad-spectrum application of siRNAs and prevent the generation of escape mutants, multiple siRNAs targeting conserved viral sequences need to be combined. In this study, using a siRNA expression vector based on the miR-155 backbone and promoted by RNA polymerase II, we initially identified nine siRNAs targeting highly conserved regions of seven JEV genes among strains of the four genotypes of JEV to effectively block the replication of the JEV vaccine strain SA14-14-2. Then, we constructed single microRNA-like polycistrons to simultaneously express these effective siRNAs under a single RNA polymerase II promoter. Finally, these single siRNAs or multiple siRNAs from the microRNA-like polycistrons showed effective anti-virus activity in genotype I and genotype III JEV wild type strains, which are the predominant genotypes of JEV in mainland China. The anti-JEV effect of these microRNA-like polycistrons was also predicted in other genotypes of JEV (genotypes II and IV), The inhibitory efficacy indicated that siRNAs×9 could theoretically inhibit the replication of JEV genotypes II and IV.  相似文献   

3.
Origin and evolution of Japanese encephalitis virus in southeast Asia   总被引:20,自引:0,他引:20       下载免费PDF全文
Since it emerged in Japan in the 1870s, Japanese encephalitis has spread across Asia and has become the most important cause of epidemic encephalitis worldwide. Four genotypes of Japanese encephalitis virus (JEV) are presently recognized (representatives of genotypes I to III have been fully sequenced), but its origin is not known. We have determined the complete nucleotide and amino acid sequence of a genotype IV Indonesian isolate (JKT6468) which represents the oldest lineage, compared it with other fully sequenced genomes, and examined the geographical distribution of all known isolates. JKT6468 was the least similar, with nucleotide divergence ranging from 17.4 to 19.6% and amino acid divergence ranging from 4.7 to 6.5%. It included an unusual series of amino acids at the carboxy terminus of the core protein unlike that seen in other JEV strains. Three signature amino acids in the envelope protein (including E327 Leu-->Thr/Ser on the exposed lateral surface of the putative receptor binding domain) distinguished genotype IV strains from more recent genotypes. Analysis of all 290 JEV isolates for which sequence data are available showed that the Indonesia-Malaysia region has all genotypes of JEV circulating, whereas only more recent genotypes circulate in other areas (P < 0.0001). These results suggest that JEV originated from its ancestral virus in the Indonesia-Malaysia region and evolved there into the different genotypes which then spread across Asia. Our data, together with recent evidence on the origins of other emerging viruses, including dengue virus and Nipah virus, imply that tropical southeast Asia may be an important zone for emerging pathogens.  相似文献   

4.
Japanese encephalitis (JE) is a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). Pigs and water birds are the main amplifying and maintenance hosts of the virus. In this study, we conducted a JEV survey in mosquitoes captured in pig farms and water bird wetland habitats in Taiwan during 2005 to 2012. A total of 102,633 mosquitoes were collected. Culex tritaeniorhynchus was the most common mosquito species found in the pig farms and wetlands. Among the 26 mosquito species collected, 11 tested positive for JEV by RT-PCR, including Cx. tritaeniorhynchus, Cx. annulus, Anopheles sinensis, Armigeres subalbatus, and Cx. fuscocephala. Among those testing positive, Cx. tritaeniorhynchus was the predominant vector species for the transmission of JEV genotypes I and III in Taiwan. The JEV infection rate was significantly higher in the mosquitoes from the pig farms than those from the wetlands. A phylogenetic analysis of the JEV envelope gene sequences isolated from the captured mosquitoes demonstrated that the predominant JEV genotype has shifted from genotype III to genotype I (GI), providing evidence for transmission cycle maintenance and multiple introductions of the GI strains in Taiwan during 2008 to 2012. This study demonstrates the intense JEV transmission activity in Taiwan, highlights the importance of JE vaccination for controlling the epidemic, and provides valuable information for the assessment of the vaccine''s efficacy.  相似文献   

5.
Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic flavivirus causing encephalitis in humans and reproductive disorder in pigs. JEV is present in large parts of Asia, where urbanization is high. Households within and outside Can Tho city, South Vietnam, were selected to monitor circulation of JEV. A nested RT-PCR was established to detect the presence of JEV in mosquitoes whereas sera from pigs belonging to households within the province were analyzed for the presence of antibodies to JEV. A total of 7885 mosquitoes were collected and divided into 352 pools whereof seven were JEV-positive, six of which were collected within the city. Fragments from four pools clustered with JEV genotype III and three with genotype I. Of the 43 pigs sampled inside the city 100% had JEV antibodies. Our study demonstrates exposure to JEV in pigs, and co-circulation of JEV genotype I and III in mosquitoes within an urban environment in South Vietnam. Thus, although JEV has mainly been considered a rural disease, the potential for transmission in urban areas cannot be ignored.  相似文献   

6.
Japanese encephalitis (JE) is a global public health issue that has spread widely to more than 20 countries in Asia and has extended its geographic range to the south Pacific region including Australia. JE has become the most important cause of viral encephalitis in the world. Japanese encephalitis viruses (JEV) are divided into five genotypes, based on the nucleotide sequence of the envelope (E) gene. The Muar strain, isolated from patient in Malaya in 1952, is the sole example of genotype V JEV. Here, the XZ0934 strain of JEV was isolated from Culex tritaeniorhynchus, collected in China. The complete nucleotide and amino acid sequence of XZ0934 strain have been determined. The nucleotide divergence ranged from 20.3% to 21.4% and amino acid divergence ranged from 8.4% to 10.0% when compared with the 62 known JEV isolates that belong to genotype I-IV. It reveals low similarity between XZ0934 and genotype I-IV JEVs. Phylogenetic analysis using both complete genome and structural gene nucleotide sequences demonstrates that XZ0934 belongs to genotype V. This, in turn, suggests that genotype V JEV is emerging in JEV endemic areas. Thus, increased surveillance and diagnosis of viral encephalitis caused by genotype V JEV is an issue of great concern to nations in which JEV is endemic.  相似文献   

7.
The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate.  相似文献   

8.
During the last 20 years, the epidemiology of Japanese encephalitis virus (JEV) has changed significantly in its endemic regions due to the gradual displacement of the previously dominant genotype III (GIII) with clade b of GI (GI-b). Whilst there is only limited genetic difference distinguishing the two GI clades (GI-a and GI-b), GI-b has shown a significantly wider and more rapid dispersal pattern in several regions in Asia than the GI-a clade, which remains restricted in its geographic distribution since its emergence. Although previously published molecular epidemiological evidence has shown distinct phylodynamic patterns, characterization of the two GI clades has only been limited to in vitro studies. In this study, Culex quinquefasciatus, a known competent JEV mosquito vector species, was orally challenged with three JEV strains each representing GI-a, GI-b, and GIII, respectively. Infection and dissemination were determined based on the detection of infectious viruses in homogenized mosquitoes. Detection of JEV RNA in mosquito saliva at 14 days post infection indicated that Cx. quinquefasciatus can be a competent vector species for both GI and GIII strains. Significantly higher infection rates in mosquitoes exposed to the GI-b and GIII strains than the GI-a strain suggest infectivity in arthropod vectors may lead to the selective advantage of previously and currently dominant genotypes. It could thus play a role in enzootic transmission cycles for the maintenance of JEV if this virus were ever to be introduced into North America.  相似文献   

9.
The variation in nucleotide sequence observed in the envelope (E) gene and the prM (precursor of M protein) region of different strains of Japanese encephalitis virus (JEV) was analysed. Presence of selective forces acting on these regions was investigated by computing the relative rates of synonymous (K s) and nonsynonymous (K a) substitutions. The ratioK s/K a was used as an indicator of the overall selective constraints on the amino acid sequence of JEV proteins. The possibility that different regions of the gene may be subject to varying selective pressures was tested by dividing the gene into three regions and estimating theK s/K a ratio for each region. On the basis of analysis of a limited number (17) of strains of JEV, evidence suggestive of positive selection acting on certain regions of the E gene of the virus, and in some cases on the entire gene, was obtained. Analysis ofK a diversity in the prM region of 46 JEV strains grouped into three genotypes revealed that strains included in genotype II were more heterogeneous than strains belonging to genotype I, while the differences between meanK a values for genotypes I and III and genotypes II and III were not statistically significant. Analysis of host-specific heterogeneity in the prM region revealed that pig isolates were more Xa-diverse than human isolates.  相似文献   

10.

Background

Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in Southeast Asia. Vaccination of domestic pigs has been suggested as a “one health” strategy to reduce viral disease transmission to humans. The efficiency of two lentiviral TRIP/JEV vectors expressing the JEV envelope prM and E glycoproteins at eliciting protective humoral response was assessed in a mouse model and piglets.

Methodology/Principal Findings

A gene encoding the envelope proteins prM and E from a genotype 3 JEV strain was inserted into a lentiviral TRIP vector. Two lentiviral vectors TRIP/JEV were generated, each expressing the prM signal peptide followed by the prM protein and the E glycoprotein, the latter being expressed either in its native form or lacking its two C-terminal transmembrane domains. In vitro transduction of cells with the TRIP/JEV vector expressing the native prM and E resulted in the efficient secretion of virus-like particles of Japanese encephalitis virus. Immunization of BALB/c mice with TRIP/JEV vectors resulted in the production of IgGs against Japanese encephalitis virus, and the injection of a second dose one month after the prime injection greatly boosted antibody titers. The TRIP/JEV vectors elicited neutralizing antibodies against JEV strains belonging to genotypes 1, 3, and 5. Immunization of piglets with two doses of the lentiviral vector expressing JEV virus-like particles led to high titers of anti-JEV antibodies, that had efficient neutralizing activity regardless of the JEV genotype tested.

Conclusions/Significance

Immunization of pigs with the lentiviral vector expressing JEV virus-like particles is particularly efficient to prime antigen-specific humoral immunity and trigger neutralizing antibody responses against JEV genotypes 1, 3, and 5. The titers of neutralizing antibodies elicited by the TRIP/JEV vector are sufficient to confer protection in domestic pigs against different genotypes of JEV and this could be of a great utility in endemic regions where more than one genotype is circulating.  相似文献   

11.
Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease. The viruses have been divided into three genotypes (genotype I for LCDV-1, II for Japanese flounder isolates, and III for rockfish isolates) on the basis of major capsid protein (MCP) gene sequences. In this study, we developed a multiplex PCR primer set in order to distinguish these genotypes. We also analyzed the MCP gene of a new LCDV isolate from the sea bass (SB98Yosu). Comparison of sequence identities between SB98Yosu and eight Japanese flounder isolates, revealed identity of more than 90.1% at nucleotide level and 96.5% at deduced amino acid level, respectively. Phylogenetic analyses based on the MCP gene showed that SB98Yosu belongs to genotype II, along with Japanese flounder isolates. Multiplex PCR based on the MCP gene allowed us to identify these genotypes in a simple and rapid manner, even in a sample that contained two genotypes, in this case genotypes II and III.  相似文献   

12.
13.

Background

India is endemic to Japanese encephalitis virus (JEV) and recurrent outbreaks occur mainly in rice growing areas. Pigs are considered to be the amplifying host for JEV and infection in gestating pigs results in reproductive failure. Most studies conducted on JEV infection in Indian pigs have been serological surveys and very little is known about JEV genotypes circulating in pigs. So the potential risk posed by pigs in JEV transmission and the genetic relationship between viruses circulating in pigs, mosquitoes and humans is poorly understood.

Methodology/Principal Findings

This study was conducted in pigs with a history of reproductive failure characterized by stillborn piglets with neuropathological lesions. Japanese encephalitis (JE) suspected brain specimens inoculated intracerebrally into mice and Vero cells resulted in successful isolation of JEV/SW/IVRI/395A/2014. Clinicopathological observations in infected mice, demonstration of JEV antigen in brain, and analysis of the envelope protein identified the swine isolate as being neurovirulent. Phylogenetic analysis based on prM and E gene sequences showed that it belonged to genotype III. This swine isolate was closely related to JEV associated with the 2005 outbreak in India and JaoArS982 from Japan. Phylogenetic analysis of JEV strains collected between 1956 and 2014 in India categorized the GIII viruses into different clades blurring their spatial distribution, which has been discernible in the previous century.

Conclusions/Significance

Isolation of JEV from stillborn piglets and its close genetic relationship with viruses detected at least three decades ago in humans and mosquitoes in Japan suggests that the virus may have been circulating among Indian pigs for several decades. The close similarity between the present swine isolate and those detected in humans affected in the 2005 outbreak in Uttar Pradesh, India, suggests the need for more intensive surveillance of pigs and implementation of suitable strategies to control JE in India.  相似文献   

14.
Analysis of hepatitis delta virus (HDV) genome sequences has revealed multiple genotypes with different geographical distributions and associated disease patterns. To date, replication-competent cDNA clones of HDV genotypes I, II, and III have been reported. HDV genotypes I, II, and IIb have been found in Taiwan. Although full-length sequences of genotype IIb have been published, its replication competence in cultured cells has yet to be reported. In order to examine this, we obtained a full-length cDNA clone, Taiwan-IIb-1, from a Taiwanese HDV genotype IIb isolate. Comparison of the complete nucleic acid sequence of Taiwan-IIb-1 with previously published genotype IIb isolates indicated that Taiwan-IIb-1 shares 98% identity with another Taiwanese isolate and 92% identity with a Japanese isolate. Transfection of Taiwan-IIb-1 into COS7 cells resulted in accumulation of the HDV genome and appearance of delta antigens, showing that cloned HDV genotype IIb can replicate in cultured cells.  相似文献   

15.
BackgroundSporadic Japanese encephalitis (JE) cases still have been reported in Zhejiang Province in recent years, and concerns about vaccine cross-protection and population-level immunity have been raised off and on within the public health sphere. Genotype I (GI) has replaced GIII as the dominant genotype in Asian countries during the past few decades, which caused considerable concerns about the potential change of epidemiology characteristics and the vaccine effectiveness. The aim of this study was to investigate the prevalence of JE neutralizing antibody and its waning antibody trend after live attenuated JE vaccine immunization. Additionally, this study analyzed the molecular characteristics of the E gene of Zhejiang Japanese encephalitis virus (JEV) strains, and established genetic relationships with other JEV strains.Conclusion/SignificancesJE neutralizing antibody positive rates increase in age ≥10 years old population, likely reflecting natural infection or natural boosting of immunity through exposure to wild virus. JE seropositivity rates were quite low in <35 years old age groups in Zhejiang Province. Waning of neutralizing antibody after live attenuated vaccine immunization was observed, but the clinical significance should be further investigated. Both the peripheral antibody response and genetic characterization indicate that current live attenuated JE vaccine conferred equal neutralizing potency against GI or GIII of wild strains. GI has replaced GIII as the dominant genotype in Zhejiang in the past few decades. Although the chance of exposure to wild JE virus has reduced, the virus still circulates in nature; therefore, it is necessary to implement immunization program for children continually and to conduct surveillance activity periodically.  相似文献   

16.

Background

Genotype I (GI) Japanese encephalitis virus (JEV) that replaced GIII virus has become the dominant circulating virus in Asia. Currently, all registered live and inactivated JEV vaccines are derived from genotype III viruses. In Taiwan, the compulsory JEV vaccination policy recommends that children receives four doses of formalin-inactivated Nakayama (GIII) JEV vaccine.

Methodology/Principal Findings

To evaluate the influence of genotype replacement on the post-vaccination viral neutralizing ability by GIII and GI viruses, the small panel of vaccinated-children serum specimens was assembled, and the reciprocal 50% plaque-reduction neutralizing antibody titers (PRNT50) were measured against Nakayama vaccine strain, CJN GIII human brain isolate and TC2009-1 GI mosquito isolate. The seropositivity rate (PRNT50≥1∶10) and geometric mean titers (GMT) against the TC2009-1 virus were the lowest among the three viruses. The protective threshold against the CJN and TC2009-1 viruses could only be achieved when the GMT against Nakayama virus was ≥1∶20 or ≥1∶80, respectively. Using undiluted vaccinees'' sera, the enhancement of JEV infection in K562 cells was observed in some low or non-neutralizing serum specimens.

Conclusions/Significance

Our preliminary study has shown that neutralizing antibodies, elicited by the mouse brain-derived and formalin-inactivated JEV Nakayama vaccine among a limited number of vaccinees, have reduced neutralizing capacity against circulating GI virus, but more detailed studies are needed to address the potential impact on the future vaccine policy.  相似文献   

17.
A quantitative genotype algorithm reflecting H5N1 Avian influenza niches   总被引:1,自引:0,他引:1  
MOTIVATION: Computational genotyping analyses are critical for characterizing molecular evolutionary footprints, thus providing important information for designing the strategies of influenza prevention and control. Most of the current methods that are available are based on multiple sequence alignment and phylogenetic tree construction, which are time consuming and limited by the number of taxa. Arbitrarily defining genotypes further complicates the interpretation of genotyping results. METHODS: In this study, we describe a quantitative influenza genotyping algorithm based on the theory of quasispecies. First, the complete composition vector (CCV) was utilized to calculate the pairwise evolutionary distance between genotypes. Next, Hierarchical Bayesian Modeling using the Gibbs Sampling algorithm was applied to identify the segment genotype threshold, which is used to identify influenza segment genotype through a modularity calculation. The viral genotype was defined by combining eight segment genotypes based on the genetic reassortment feature of influenza A viruses. RESULTS: We applied this method for H5N1 avian influenza viruses and identified 107 niches among 283 viruses with a complete genome set. The diversity of viral genotypes, and their correlation with geographic locations suggests that these viruses form local niches after being introduced to a new ecological environment through poultry trade or bird migration. This novel method allows us to define genotypes in a robust, quantitative as well as hierarchical manner. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

18.

Background

Japanese encephalitis (JE) is an arboviral disease with high case fatality rates and neurologic or psychiatric sequelae among survivors in Asia, western Pacific countries and northern Australia. Japanese encephalitis virus (JEV) is the cause of JE and the emergence of genotype ? (GI) JEV has displaced genotype III (GIII) as the dominant strains circulating in some Asian regions. The currently available JE vaccines are safe and effective in preventing this disease, but they are developed based on the GIII JEV strains.

Methods

The recombinant virus PRV TK?/gE?/PrM-E+ which expressed the premembrane (prM) and envelope (E) proteins of JEV SX09S-01 strain (genotype I, GI) was constructed by homologous recombination between the genome of PRV TK?/gE?/LacZ+ digested with EcoRI and plasmid pIE-CAG-PrM-E-BGH. Expression of JEV PrM and E proteins was analyzed by Western blot analysis. Immune efficacy of PRV TK?/gE?/PrM-E+ was further evaluated in mouse model.

Results

A recombinant pseudorabies virus (PRV TK?/gE?/PrM-E+) was successfully constructed. Mice experiments showed that PRV TK?/gE?/PrM-E+ could induce a high level of ELISA antibodies against PRV and JEV, as well as high titer of PRV neutralizing antibodies. After challenge with 1?×?107 PFU virulent JEV SX09S-01 strain, the time of death was delayed and the survival rate was improved in PRV TK?/gE?/PrM-E+ vaccinated mice.

Conclusions

PRV TK?/gE?/PrM-E+ is a potential vaccine candidate against PRV and JEV GI infection in the future.
  相似文献   

19.
The Japanese encephalitis virus (JEV), an arthropod-born Flavivirus, is the major cause of viral encephalitis, responsible for 10,000–15,000 deaths each year, yet is a neglected tropical disease. Since the JEV distribution area has been large and continuously extending toward new Asian and Australasian regions, it is considered an emerging and reemerging pathogen. Despite large effective immunization campaigns, Japanese encephalitis remains a disease of global health concern. JEV zoonotic transmission cycles may be either wild or domestic: the first involves wading birds as wild amplifying hosts; the second involves pigs as the main domestic amplifying hosts. Culex mosquito species, especially Cx. tritaeniorhynchus, are the main competent vectors. Although five JEV genotypes circulate, neither clear-cut genotype-phenotype relationship nor clear variations in genotype fitness to hosts or vectors have been identified. Instead, the molecular epidemiology appears highly dependent on vectors, hosts'' biology, and on a set of environmental factors. At global scale, climate, land cover, and land use, otherwise strongly dependent on human activities, affect the abundance of JEV vectors, and of wild and domestic hosts. Chiefly, the increase of rice-cultivated surface, intensively used by wading birds, and of pig production in Asia has provided a high availability of resources to mosquito vectors, enhancing the JEV maintenance, amplification, and transmission. At fine scale, the characteristics (density, size, spatial arrangement) of three landscape elements (paddy fields, pig farms, human habitations) facilitate or impede movement of vectors, then determine how the JEV interacts with hosts and vectors and ultimately the infection risk to humans. If the JEV is introduced in a favorable landscape, either by live infected animals or by vectors, then the virus can emerge and become a major threat for human health. Multidisciplinary research is essential to shed light on the biological mechanisms involved in the emergence, spread, reemergence, and genotypic changes of JEV.  相似文献   

20.
Characterizations of genetic variations among hepatitis delta virus (HDV) isolates have focused principally on phylogenetic analysis of sequences, which vary by 30 to 40% among three genotypes and about 10 to 15% among isolates of the same genotype. The significance of the sequence differences has been unclear but could be responsible for pathogenic variations associated with the different genotypes. Studies of the mechanisms of HDV replication have been limited to cDNA clones from HDV genotype I, which is the most common. To perform a comparative analysis of HDV RNA replication in genotypes I and III, we have obtained a full-length cDNA clone from an HDV genotype III isolate. In transfected Huh-7 cells, the functional roles of the two forms of the viral protein, hepatitis delta antigen (HDAg), in HDV RNA replication are similar for both genotypes I and III; the short form is required for RNA replication, while the long form inhibits replication. For both genotypes, HDAg was able to support replication of RNAs of the same genotype that were mutated so as to be defective for HDAg production. Surprisingly, however, neither genotype I nor genotype III HDAg was able to support replication of such mutated RNAs of the other genotype. The inability of genotype III HDAg to support replication of genotype I RNA could have been due to a weak interaction between the RNA and HDAg. The clear genotype-specific activity of HDAg in supporting HDV RNA replication confirms the original categorization of HDV sequences in three genotypes and further suggests that these should be referred to as types (i.e., HDV-I and HDV-III) rather than genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号