首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tick salivary glands are important organs that enable the hematophagous feeding of the tick. We previously described the innervation of the salivary gland acini types II and III by a pair of protocerebral salivary gland neurons that produce both myoinhibitory peptide (MIP) and SIFamide (?imo et al., 2009b). In this study we identified authentic receptors expressed in the salivary glands for these neuropeptides. Homology-based searches for these receptors in the Ixodes scapularis genome sequence were followed by gene cloning and functional expression of the receptors. Both receptors were activated by low nanomolar concentrations of their respective ligands. The temporal expression patterns of the two ligands and their respective receptors suggest that the SIFamide signaling system pre-exists in unfed salivary glands, while the MIP system is activated upon initiation of feeding. Immunoreactivity for the SIFamide receptor in the salivary gland was detected in acini types II and III, surrounding the acinar valve and extending to the basal region of the acinar lumen. The location of the SIFamide receptor in the salivary glands suggests three potential target cell types and their probable functions: myoepithelial cell that may function in the contraction of the acini and/or the control of the valve; large, basally located dopaminergic granular cells for regulation of paracrine dopamine; and neck cells that may be involved in the control of the acinar duct and its valve.  相似文献   

2.
《Insect Biochemistry》1989,19(6):527-534
Eucaryotes have the ubiquitous enzyme apyrase or ATP diphosphohydrolase, known to catalyze the hydrolysis of the α and β phosphate groups of di- and triphosphonucleosides. In hematophagous arthropods, the salivary glands are the main source of this enzyme that helps the insects to locate blood in hosts by preventing platelet aggregation. A structural comparison between mosquito salivary gland and pig pancreas apyrase was performed using immunoblot analysis with specific polyclonal antibodies raised to the pancreatic enzyme. Strong reactivity was observed with a polypeptide of mol. wt close to 60 kDa in the Aedes aegypti salivary glands, providing evidence for structural homology between the apyrase present in vertebrates and invertebrates.  相似文献   

3.
4.
The larvae of the cabbage root fly induce serious damage to cultivated crops of the family Brassicaceae. We here report the biochemical characterisation of neuropeptides from the central nervous system and neurohemal organs, as well as regulatory peptides from enteroendocrine midgut cells of the cabbage maggot. By LC-MALDI-TOF/TOF and chemical labelling with 4-sulfophenyl isothiocyanate, 38 peptides could be identified, representing major insect peptide families: allatostatin A, allatostatin C, FMRFamide-like peptides, kinin, CAPA peptides, pyrokinins, sNPF, myosuppressin, corazonin, SIFamide, sulfakinins, tachykinins, NPLP1-peptides, adipokinetic hormone and CCHamide 1. We also report a new peptide (Yamide) which appears to be homolog to an amidated eclosion hormone-associated peptide in several Drosophila species. Immunocytochemical characterisation of the distribution of several classes of peptide-immunoreactive neurons and enteroendocrine cells shows a very similar but not identical peptide distribution to Drosophila. Since peptides regulate many vital physiological and behavioural processes such as moulting or feeding, our data may initiate the pharmacological testing and development of new specific peptide-based protection methods against the cabbage root fly and its larva.  相似文献   

5.
6.
When treating head and neck for cancer with the use of radiotherapy the salivary glands are usually within the treatment volume with ensuing dryness and discomfort. Since the autonomic nervous system is of pivotal importance for the salivary gland function and integrity, the irradiation-induced effects may involve an influence on the innervation of salivary glands. Therefore, the rat submandibular gland, including the submandibular ganglionic cells, has been subjected to immunohistochemical examination with respect to expression of neuropeptides following fractionated irradiation with high energy photons. A markedly enhanced expression of bombesin- and leu-enkephalin-(ENK)-like immunoreactivities (LI) in the ganglionic cells and a pronounced increase in the number of nerve fibers showing these immunoreactivities in the submandibular gland tissue following irradiation were observed 10 days after treatment. On the other hand, no changes in the patterns of VIP (vasoactive intestinal polypeptide)- and NPY (neuropeptide Y)-immunoreactivities occurred. Thus, the present study shows that alterations in the expression of certain neuropeptides take place in the submandibular gland and its associated ganglionic cells in response to irradiation of the head and neck region. These changes may add further explanation to the inherent radiosensitivity of salivary glands.  相似文献   

7.
Human populations are constantly plagued by hematophagous insects' bites, in particular the triatomine insects that are vectors of the Trypanosoma cruzi agent in Chagas disease. The pharmacologically-active molecules present in the salivary glands of hematophagous insects are injected into the human skin to initiate acquisition of blood meals. Sets of vasodilators, anti-platelet aggregators, anti-coagulants, immunogenic polypeptides, anesthetics, odorants, antibiotics, and detoxifying molecules have been disclosed with the aid of proteomics and recombinant cDNA techniques. These molecules can provide insights about the insect-pathogen-host interactions essential for understanding the physiopathology of the insect bite. The data and information presented in this review aim for the development of new drugs to prevent insect bites and the insect-transmitted endemic of Chagas disease.  相似文献   

8.
Ghrelin and obestatin are a single gene products and are a multiple functional peptides that regulates energy homeostasis, and food intake. In the present work, we studied the secretion of ghrelin and its co-secreted peptide obestatin in 44 patients with ischemic heart disease with that of 27 healthy matched controls. Here we first conducted using an immunohistochemistry assay to screen whether human salivary glands have any obestatin immunoreactivity. Then, serum and saliva obestatin and acylated ghrelin levels were determined by using Radioimmunoassay. Our immunohistochemical analysis demonstrated that obestatin was localized in the striated and excretory duct of human salivary gland. We also report for the first time that obestatin, like ghrelin, is present in human salivary gland and saliva. No evidence of the role of obestatin or ghrelin saliva levels in the context of ischemic heart disease was found. Salivary ghrelin and obestatin levels are correlated in controls with the blood levels. Determination of salivary values could represent a non-invasive alternative to serum ones that can be useful in clinical practice.  相似文献   

9.
Rhipicephalus microplus is an obligate hematophagous ectoparasite of cattle and an important biological vector of Anaplasma marginale in tropical and subtropical regions. The primary determinants for A. marginale transmission are infection of the tick gut, followed by infection of salivary glands. Transmission of A. marginale to cattle occurs via infected saliva delivered during tick feeding. Interference in colonization of either the tick gut or salivary glands can affect transmission of A. marginale to naïve animals. In this study, we used the tick embryonic cell line BME26 to identify genes that are modulated in response to A. marginale infection. Suppression-subtractive hybridization libraries (SSH) were constructed, and five up-regulated genes {glutathione S-transferase (GST), cytochrome c oxidase sub III (COXIII), dynein (DYN), synaptobrevin (SYN) and phosphatidylinositol-3,4,5-triphosphate 3-phosphatase (PHOS)} were selected as targets for functional in vivo genomic analysis. RNA interference (RNAi) was used to determine the effect of tick gene knockdown on A. marginale acquisition and transmission. Although RNAi consistently knocked down all individually examined tick genes in infected tick guts and salivary glands, only the group of ticks injected with dsCOXIII failed to transmit A. marginale to naïve calves. To our knowledge, this is the first report demonstrating that RNAi of a tick gene is associated with a failure of A. marginale transmission.  相似文献   

10.
We have characterized a pore-forming lytic protein from the saliva of the hematophagous insect Triatoma infestans, a vector of Chagas disease. This protein, named trialysin, has 22 kDa and is present in the saliva at about 200 microg/ml. Purified trialysin forms voltage-dependent channels in planar lipid bilayers with conductance of 880 +/- 40 pS. It lyses protozoan parasites and bacteria indicating that it has a role in the control of microorganism growth in the salivary glands. At higher concentrations, but below those found in saliva, trialysin can also permeabilize and lyse mammalian cells, suggesting that it might also facilitate insect blood feeding by interfering with the cell response of the host. The translated cDNA sequence of trialysin shows a basic, lysine-rich protein in which the N-terminal region is predicted to form an amphipathic alpha-helical structure with positive charges on one side and hydrophobic amino acids on the opposite side. A synthetic peptide corresponding to this cationic amphipathic alpha-helix induces protozoan lysis and mammalian cell permeabilization, showing that this region is involved in lytic activity. However, the lytic peptide G6V32 is 10-fold less efficient than trialysin in lysing parasites and 100-fold less efficient in permeabilizing mammalian cells. Trialysin activity is about 10-fold reduced in salivary gland homogenates prepared in the presence of an irreversible serine-protease inhibitor. Since trialysin precursor contains an anionic pro-sequence of 33 amino acids contiguous to the cationic amphipathic putative alpha-helix, we propose that removal of the acidic pro-sequence by limited proteolysis activates trialysin by exposing this lytic basic amphipathic motif.  相似文献   

11.
Receptorguanylate cyclases (rGCs) modulate diverse physiological processes including mammalian cardiovascular function and insect eclosion. The Drosophila genome encodes several receptor and receptor-like GCs, but no ligand for any Drosophila rGC has yet been identified. By screening peptide libraries in Drosophila S2 cells, the Drosophila peptide NPLP1-VQQ (NLGALKSSPVHGVQQ) was shown to be a ligand for the rGC, Gyc76C (CG42636, previously CG8742, l(3)76BDl, DrGC-1). In the adult fly, expression of Gyc76C is highest in immune and stress-sensing epithelial tissues, including Malpighian tubules and midgut; and NPLP1-VQQ stimulates fluid transport and increases cGMP content in tubules. cGMP signaling is known to modulate the activity of the IMD innate immune pathway in tubules via activation and nuclear translocation of the NF-kB orthologue, Relish, resulting in increased anti-microbial peptide (AMP) gene expression; and so NPLP1-VQQ might act in immune/stress responses. Indeed, NPLP1-VQQ induces nuclear translocation of Relish in intact tubules and increases expression of the anti-microbial peptide gene, diptericin. Targeted Gyc76C RNAi to tubule principal cells inhibited both NPLP1-VQQ-induced Relish translocation and diptericin expression. Relish translocation and increased AMP gene expression also occurs in tubules in response to dietary salt stress. Gyc76C also modulates organismal survival to salt stress - ablation of Gyc76C expression in only tubule principal cells prevents Relish translocation, reduces diptericin expression, and reduces organismal survival in response to salt stress. Thus, the principal-cell localized NPLP1-VQQ/Gyc76C cGMP pathway acts to signal environmental (salt) stress to the whole organism.  相似文献   

12.
13.
14.
15.
For malaria transmission to occur, Plasmodium sporozoites must infect the salivary glands of their mosquito vectors. This study reports that Anopheles gambiae SRPN6 participates in a local salivary gland epithelial response against the rodent malaria parasite, Plasmodium berghei . We showed previously that SRPN6, an immune inducible midgut invasion marker, influences ookinete development. Here we report that SRPN6 is also specifically induced in salivary glands with the onset of sporozoite invasion. The protein is located in the basal region of epithelial cells in proximity to invading sporozoites. Knockdown of SRPN6 during the late phase of sporogony by RNAi has no effect on oocyst rupture but significantly increases the number of sporozoites present in salivary glands. Despite several differences between the passage of Plasmodium through the midgut and the salivary glands, this study identifies a striking overlap in the molecular responses of these two epithelia to parasite invasion.  相似文献   

16.
Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect that transmits the protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas' disease. Its saliva contains trialysin, a protein that forms pores in membranes. Peptides based on the N-terminus of trialysin lyse cells and fold into alpha-helical amphipathic segments resembling antimicrobial peptides. Using a specific antiserum against trialysin, we show here that trialysin is synthesized as a precursor that is less active than the protein released after saliva secretion. A synthetic peptide flanked by a fluorophore and a quencher including the acidic proregion and the lytic N-terminus of the protein is also less active against cells and liposomes, increasing activity upon proteolysis. Activation changes the peptide conformation as observed by fluorescence increase and CD spectroscopy. This mechanism of activation could provide a way to impair the toxic effects of trialysin inside the salivary glands, thus restricting damaging lytic activity to the bite site.  相似文献   

17.
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are membrane-bound ectoenzymes that hydrolyze extracellular nucleotides. We investigated the distribution of NTPDase1 and NTPDase2 in murine salivary gland and pancreas. Histochemistry and immunostaining (by both light and electron microscopy), combined with functional assays, were used to describe the localization patterns and enzyme activities in the organs of wild-type and NTPDase1/cd39-null mice. Pancreatic acinar cells and salivary gland acinar/myoepithelial cells were positive for NTPDase1 and NTPDase2. Ecto-ATPase activity was slightly higher in salivary glands. Ductal epithelial cells expressed ecto-ATPase activity but NTPDase1 and NTPDase2 expression were weak at best. ATPase activity was found in blood vessels of both tissues and its localization pattern overlapped with NTPDase1 staining. In these structures, NTPDase2 antibodies stained the basolateral aspect of endothelial cells and the supporting cells. Biochemical assays and histochemical staining showed relatively high levels of ATPase activity in both glands of cd39(-/-) mice. Our data therefore support a physiological role for NTPDase2 and other ectonucleotidases in the pancreas and salivary glands. Because NTPDase1 is expressed in non-vascular cell types, this finding suggests that NTPDase1 may have functions in the gastrointestinal tract that differ from those demonstrated in the vascular system.  相似文献   

18.
Radiotherapy of head and neck cancers often results in collateral damage to adjacent salivary glands associated with clinically significant hyposalivation and xerostomia. Due to the reduced capacity of salivary glands to regenerate, hyposalivation is treated by substitution with artificial saliva, rather than through functional restoration of the glands. During embryogenesis, the ectodysplasin/ectodysplasin receptor (EDA/EDAR) signaling pathway is a critical element in the development and growth of salivary glands. We have assessed the effects of pharmacological activation of this pathway in a mouse model of radiation-induced salivary gland dysfunction. We report that post-irradiation administration of an EDAR-agonist monoclonal antibody (mAbEDAR1) normalizes function of radiation damaged adult salivary glands as determined by stimulated salivary flow rates. In addition, salivary gland structure and homeostasis is restored to pre-irradiation levels. These results suggest that transient activation of pathways involved in salivary gland development could facilitate regeneration and restoration of function following damage.  相似文献   

19.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins assemble in tight core complexes which promote fusion of carrier vesicles with target compartments. Members of this class of proteins are expressed in all eukaryotic cells and distributed in distinct subcellular compartments. All vesicle transport mechanisms known to date have an essential requirement for a member of the Sec1 protein family, including the nSec1 in regulated exocytosis. A homolog of nSec1 was cloned and sequenced from the salivary glands of partially fed female ticks. Double-stranded RNA was used to specifically reduce the amount of nSec1 mRNA and protein in female adult tick salivary glands. This reduction was accompanied by a decrease in anticoagulant protein release by the glands and by abnormalities in feeding by dsRNA treated ticks. We report the efficacy of double-stranded RNA-mediated interference in "knocking down" nSec1 both in vivo and in vitro in tick salivary glands and the applicability of this technique for studying the mechanism of exocytosis in tick salivary glands.  相似文献   

20.
The distribution and origin of substance P (SP) and neurokinin A (NKA) were studied in rat in the anterior buccal glands, which are minor mucous salivary glands. Indirect immunofluorescence staining showed moderate SP and NKA innervation of salivary acini and interlobular ducts, whereas blood vessels were more sparsely innervated, and there were few nerve fibers in the stroma and around the intralobular ducts. About 10%–20% of the trigeminal ganglion cells showed equally strong immunoreactivity to both SP and NKA. Unilateral denervation of the branches of the trigeminal nerve caused complete disappearance of the stromal fibers and greatly reduced the number of all other SP-immunoreactive and NKA-immunoreactive nerve fibers. In the superior cervical ganglia, SP and NKA immunoreactivity was restricted to small intensely fluorescent cells; SP and NKA immunoreactivity was absent from principal ganglionic cells, and thus sympathectomy had no any effect on the number or distribution of fibers immunoreactive for SP and NKA in the anterior buccal glands. The fibers remaining after sensory denervation could have been of parasympathetic origin, indicating a dual origin of nerves immunoreactive for SP and NKA in these glands. The present data demonstrate that the major part of the glandular SP and NKA innervation in the minor salivary glands derives from the trigeminal ganglia. The distribution of the peripheral nerve fibers indicates that they may play a role in the delivery of potent neuropeptides involved in the vascular, secretory, and motor (myoepithelial cells) functions of salivary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号