首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reverse cholesterol transport (RCT) has been characterized as a crucial step for antiatherosclerosis, which is initiated by ATP-binding cassette A1 (ABCA1) to mediate the efflux of cellular phospholipids and cholesterol to lipid-free apolipoprotein A-I (apoA-I). However, the mechanisms underlying apoA-I/ABCA1 interaction to lead to the lipidation of apoA-I are poorly understood. There are several models proposed for the interaction of apoA-I with ABCA1 as well as the lipidation of apoA-I mediated by ABCA1. ApoA-I increases the levels of ABCA1 protein markedly. In turn, ABCA1 can stabilize apoA-I. The interaction of apoA-I with ABCA1 could activate signaling molecules that modulate posttranslational ABCA1 activity or lipid transport activity. The key signaling molecules in these processes include protein kinase A (PKA), protein kinase C (PKC), Janus kinase 2 (JAK2), Rho GTPases and Ca2+, and many factors also could influence the interaction of apoA-I with ABCA1. This review will summarize these mechanisms for the apoA-I interaction with ABCA1 as well as the signal transduction pathways involved in these processes.  相似文献   

2.
Moderate alcohol consumption increases HDL cholesterol, which is involved in reverse cholesterol transport (RCT). The aim of this study was to investigate the effect of moderate alcohol consumption on cholesterol efflux, using J774 mouse macrophages and Fu5AH cells, and on other parameters in the RCT pathway. Twenty-three healthy men (45-65 years) participated in a randomized, partially diet-controlled, crossover trial. They consumed four glasses of whisky (40 g of alcohol) or water daily for 17 days. After 17 days of whisky consumption, serum capacity to induce ABCA1-dependent cholesterol efflux from J774 mouse macrophages was increased by 17.5% (P = 0.027) compared with water consumption. Plasma capacity to induce cholesterol efflux from Fu5AH cells increased by 4.6% (P = 0.002). Prebeta-HDL, apolipoprotein A-I (apoA-I), and lipoprotein A-I:A-II also increased by 31.6, 6.2, and 5.7% (P < 0.05), respectively, after whisky consumption compared with water consumption. Changes of cAMP-stimulated cholesterol efflux correlated (r = 0.65, P < 0.05) with changes of apoA-I but not with changes of prebeta-HDL (r = 0.30, P = 0.18). Cholesterol efflux capacities from serum of lean men were higher than those from overweight men. In conclusion, this study shows that moderate alcohol consumption increases the capacity of serum to induce cholesterol efflux from J774 mouse macrophages, which may be mediated by ABCA1.  相似文献   

3.
正三磷酸腺苷结合盒转运体A1(ATP-binding cassette transporter A1,ABCA1)作为介导细胞内脂质流出,维持细胞脂质代谢平衡的重要跨膜蛋白,对动脉粥样硬化(atherosclerosis,AS)的防治具有重要意义[1].近日,清华大学结构生物学高精尖创新中心的颜宁教授与龚欣博士组成的研究团队(Cell,2017,169:1228-1239)采用冷冻电子显微镜技术,经过重组人全长ABCA1蛋白制备、透射电子显微  相似文献   

4.
We previously reported that cholesterol-enriched macrophages excrete cholesterol into the extracellular matrix. A monoclonal antibody that detects cholesterol microdomains labels the deposited extracellular particles. Macro­phage deposition of extracellular cholesterol depends, in part, on ABCG1, and this cholesterol can be mobilized by HDL components of the reverse cholesterol transport process. The objective of the current study was to determine whether ABCA1 also contributes to macrophage deposition of extracellular cholesterol. ABCA1 functioned in extracellular cholesterol deposition. The liver X receptor agonist, TO901317 (TO9), an ABCA1-inducing factor, restored cholesterol deposition that was absent in cholesterol-enriched ABCG1−/− mouse macrophages. In addition, the ABCA1 inhibitor, probucol, blocked the increment in cholesterol deposited by TO9-treated wild-type macrophages, and completely inhibited deposition from TO9-treated ABCG1−/− macrophages. Lastly, ABCA1−/− macrophages deposited much less extracellular cholesterol than wild-type macrophages. These findings demonstrate a novel function of ABCA1 in contributing to macrophage export of cholesterol into the extracellular matrix.  相似文献   

5.
The influence of apolipoprotein (apo) A-I structure on ABCA1-mediated efflux of cellular unesterified (free) cholesterol (FC) and phospholipid (PL) is not well understood. To address this issue, we used a series of apoA-I mutants to examine the contributions of various domains in the molecule to ABCA1-mediated FC and PL efflux from mouse J774 macrophages and human skin fibroblasts. Irrespective of the cell type, deletion or disruption of the C-terminal lipid-binding domain of apoA-I drastically reduced the FC and PL efflux ( approximately 90%), indicating that the C-terminal amphipathic alpha-helix is required for high affinity microsolubilization of FC and PL. Deletion in the N-terminal region of apoA-I also reduced the lipid efflux ( approximately 30%) and increased the K(m) about 2-fold compared with wild type apoA-I, whereas deletion of the central domain (Delta123-166) had no effect on either K(m) or V(max). These results indicate that ABCA1-mediated lipid efflux is relatively insensitive to the organization of the apoA-I N-terminal helix-bundle domain. Alterations in apoA-I structure caused parallel changes in its ability to bind to a PL bilayer and to induce efflux of FC and PL. Overall, these results are consistent with a two-step model for ABCA1-mediated lipid efflux. In the first step, apoA-I binds to ABCA1 and hydrophobic alpha-helices in the C-terminal domain of apoA-I insert into the region of the perturbed PL bilayer created by the PL transport activity of ABCA1, thereby allowing the second step of lipidation of apoA-I and formation of nascent high density lipoprotein particles to occur.  相似文献   

6.
Prior studies provide data supporting the notion that ATP binding cassette transporter A1 (ABCA1) promotes lipid efflux to extracellular acceptors in a two-step process: first, ABCA1 mediates phospholipid efflux to an apolipoprotein, and second, this apolipoprotein-phospholipid complex accepts free cholesterol in an ABCA1-independent manner. In the current study using RAW264.7 cells, ABCA1-mediated free cholesterol and phospholipid efflux to apolipoprotein A-I (apoA-I) were tightly coupled to each other both temporally and after treatment with ABCA1 inhibitors. The time course and temperature dependence of ABCA1-mediated lipid efflux to apoA-I support a role for endocytosis in this process. Cyclodextrin treatment of RAW264.7 cells partially inhibited 8Br-cAMP-induced efflux of free cholesterol and phospholipid to apoA-I. ABCA1-expressing cells are more sensitive to cell damage by high-dose cyclodextrin and vanadate, leading to increased lactate dehydrogenase leakage and phospholipid release even in the absence of the acceptor apoA-I. Finally, we could not reproduce a two-step effect on lipid efflux using conditioned medium from ABCA1-expressing cells pretreated with cyclodextrin.  相似文献   

7.
Many of the apolipoproteins in HDL can elicit cholesterol efflux via ABCA1, a critical initial step in HDL formation. Recent work has indicated that omnipresent amphipathic helices play a critical role, and these have been studied intensively in the most common HDL protein, apolipoprotein (apo)A-I. However, little information exists about helical domain arrangement in other apolipoproteins. We studied two of the smallest apolipoproteins known to interact with ABCA1, human apoA-II and apoC-I, in terms of ability to reorganize phospholipid (PL) bilayers and to promote ABCA1-mediated cholesterol. We found that both proteins contained helical domains that were fast and slow with respect to solubilizing PL. ABCA1-medated efflux required a minimum of a bihelical polypeptide comprised of at least one each of a slow and fast lipid reorganizing domain. In both proteins, the fast helix was located at the C terminus preceded by a slow helix. Helical placement in apoC-I was not critical for ABCA1 activity, but helix swaps in apoA-II dramatically disrupted cholesterol efflux, indicating that the tertiary structure of the longer apolipoprotein is important for the pathway. This work has implications for a more complete molecular understanding of apolipoprotein-mediated cholesterol efflux.  相似文献   

8.
Apolipoprotein mimetic peptides are short amphipathic peptides that efflux cholesterol from cells by the ABCA1 transporter and are being investigated as therapeutic agents for cardiovascular disease. We examined the role of helix stabilization of these peptides in cholesterol efflux. A 23-amino acid long peptide (Ac-VLEDSFKVSFLSALEEYTKKLNTQ-NH2) based on the last helix of apoA-I (A10) was synthesized, as well as two variants, S1A10 and S2A10, in which the third and fourth and third and fifth turn of each peptide, respectively, were covalently joined by hydrocarbon staples. By CD spectroscopy, the stapled variants at 24 °C were more helical in aqueous buffer than A10 (A10 17%, S1A10 62%, S2A10 97%). S1A10 and S2A10 unlike A10 were resistant to proteolysis by pepsin and chymotrypsin. S1A10 and S2A10 showed more than a 10-fold increase in cholesterol efflux by the ABCA1 transporter compared to A10. In summary, hydrocarbon stapling of amphipathic peptides increases their helicity, makes them resistant to proteolysis and enhances their ability to promote cholesterol efflux by the ABCA1 transporter, indicating that this peptide modification may be useful in the development of apolipoprotein mimetic peptides.  相似文献   

9.
Ceramide is a component of the sphingomyelin cycle and a well-established lipid signaling molecule. We recently reported that ceramide specifically increased ABCA1-mediated cholesterol efflux to apolipoprotein A-I (apoA-I), a critical process that leads to the formation of cardioprotective HDL. In this report, we characterize the structural features of ceramide required for this effect. C2 dihydroceramide, which contains a fully saturated acyl chain and is commonly used as a negative control for ceramide apoptotic signaling, stimulated a 2- to 5-fold increase in ABCA1-mediated cholesterol efflux to apoA-I over a 0-60 muM concentration range without the cell toxicity apparent with native C2 ceramide. Compared with C2 ceramide, C6 and C8 ceramides with medium-length N-acyl chains showed a similar extent of efflux stimulation (a 2- to 5-fold increase) but at a higher onset concentration than the less hydrophobic C2 ceramide. In contrast, the reduced and methylated ceramide analogs, N,N-dimethyl sphingosine and N,N,N-trimethyl sphingosine, failed to stimulate cholesterol efflux. We found that changes in the native spatial orientation at either of two chiral carbon centers (or both) resulted in an approximately 50% decrease compared with native ceramide-stimulated cholesterol efflux. These data show that the overall ceramide shape and the amide bond are critical for the cholesterol efflux effect and suggest that ceramide acts through a protein-mediated pathway to affect ABCA1 activity.  相似文献   

10.
Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantitating cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for the development of a high-throughput assay to screen large numbers of serum as would be required in studying the link between efflux and CAD. We compared efflux using a fluorescent sterol (boron dipyrromethene difluoride linked to sterol carbon-24, BODIPY-cholesterol) with that of [(3)H]cholesterol in J774 macrophages. Fractional efflux of BODIPY-cholesterol was significantly higher than that of [(3)H]cholesterol when apo A-I, HDL(3), or 2% apoB-depleted human serum were used as acceptors. BODIPY-cholesterol efflux correlated significantly with [(3)H]cholesterol efflux (p < 0.0001) when apoB-depleted sera were used. The BODIPY-cholesterol efflux correlated significantly with preβ-1 (r(2) = 0.6) but not with total HDL-cholesterol. Reproducibility of the BODIPY-cholesterol efflux assay was excellent between weeks (r(2) = 0.98, inter-assay CV = 3.31%). These studies demonstrate that BODIPY-cholesterol provides an efficient measurement of efflux compared with [(3)H]cholesterol and is a sensitive probe for ABCA1-mediated efflux. The increased sensitivity of BODIPY-cholesterol assay coupled with the simplicity of measuring fluorescence results in a sensitive, high-throughput assay that can screen large numbers of sera, and thus establish the relationship between cholesterol efflux and atherosclerosis.  相似文献   

11.
Alagille syndrome is associated with bile duct paucity resulting in liver disease. Patients can be divided into mildly and severely icteric groups, with both groups having altered lipoproteins. The incidence of ischemic heart disease is rare in severely cholestatic children despite increased total cholesterol and decreased high density lipoprotein cholesterol (HDL-C). The present studies examine the impact of altered lipid and lipoproteins on scavenger receptor class B type I (SR-BI)- and ABCA1-mediated efflux to serum from both groups. Efflux was compared with serum from 29 patients (15 with normal plasma cholesteryl ester, 14 with low cholesteryl ester). Efflux via SR-BI and ABCA1 was studied using cell systems having either low or high expression levels of these receptors. SR-BI efflux was lower (P = 0.04) with serum from severely icteric patients (3.9 +/- 1.4%) compared with serum from mildly icteric patients (5.1 +/- 1.4%) and was positively correlated with HDL-C and its apolipoproteins. SR-BI-mediated efflux was not correlated with any particular mature HDL but was negatively correlated with small lipid-poor prebeta-1 HDL. Consistent with severely icteric patients having high prebeta-1 HDL levels, the ABCA1 efflux was significantly higher with their serum (4.8 +/- 2.2%) compared with serum from mildly icteric patients (2.0 +/- 0.6%) and was positively correlated with prebeta-1 HDL. These studies demonstrated that prebeta-1 HDL is the preferred acceptor for ABCA1 efflux, whereas many particles mediate SR-BI efflux.  相似文献   

12.
The ATP-binding cassette transporter 1 (ABCA1) is a trans-membrane peptide that is involved in the lipidification of ApoA-I. ABCA1 gene was initially implicated in Tangier disease and familial hypoalphalipoproteinemia and has been shown to be associated with coronary artery disease and atherosclerosis as well. Recently, a haplotype in ABCA1 gene was associated with increased risk of type II diabetes mellitus (DM). In this report, a relationship between ApoA-I, DM and ABCA1 has been emphasized.  相似文献   

13.

Objectives

To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development.

Methods and results

Chimeras with dysfunctional macrophage ABCA5 (ABCA5−M/−M) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5−/−) mice into irradiated LDLr−/− mice. In vitro, bone marrow-derived macrophages from ABCA5−M/−M chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr−/− mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5−M/−M chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5−M/−M chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding.

Conclusions

ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr−/− mice.  相似文献   

14.
15.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.  相似文献   

16.
Using a sensitive real time fluorescent PCR assay, ABCA1 mRNA levels were induced by approximately 50-70-fold following 8Br-cAMP treatment of the RAW264 murine macrophage cell line, concomitant with the induction of cholesterol efflux to apoAI and HDL. A stably transfected ABCA1 antisense cDNA cell line was created, which led to approximately 50-70% reductions in ABCA1 mRNA levels in basal and 8Br-cAMP-treated cells, and diminished to the same extent the 8Br-cAMP-mediated efflux of cholesterol to apolipoprotein AI and HDL. These data demonstrate that ABCA1 is necessary for the cAMP-induced lipid efflux to both apoAI and HDL.  相似文献   

17.
A unique property of the extracellular matrix of J774 and THP-1 cells has been identified, which contributes to the ability of these cells to promote cholesterol efflux. We demonstrate high level apolipoprotein (apo) A-I binding to macrophage cells (THP-1 and J774) and to their extracellular matrix (ECM). However, high level apoA-I binding is not observed on fibroblasts, HepG2 cells, or U937 cells (a macrophage cell line that does not efflux cholesterol to apoA-I or bind apoA-I on their respective ECM). Binding to the ECM of THP-1 or J774 macrophages depends on the presence of apoA-I C-terminal helices and is markedly reduced with a mutant lacking residues 187-243 (apoA-I Delta(187-243)), suggesting that the hydrophobic C terminus forms a hydrophobic interaction with the ECM. ApoA-I binding is lost upon trypsin treatment or with Triton X-100, a preparation method that de-lipidates the ECM. However, binding is recovered with re-lipidation, and is preserved with ECM prepared using cytochalasin B, which conserves the endogenous phospholipid levels of the ECM. We also demonstrate that specific cholesterol efflux to apoA-I is much reduced in cells released from their native ECM, but fully restored when ECM-depleted cells are added back to ECM in the presence of apoA-I. The apoA-I-mediated efflux is deficient in plated or suspension U937 macrophages, but is restored to high levels when the suspension U937 cells are reconstituted with the ECM of J774 cells. The ECM-dependent activity was much reduced in the presence of glyburide, indicating participation of ABCA1 (ATP-binding cassette transporter 1) in the efflux mechanism. These studies establish a novel binding site for apoA-I on the macrophage ECM that may function together with ABCA1 in promoting cholesterol efflux.  相似文献   

18.
Myristica fragrans is a traditional herbal medicine and has been shown to alleviate the development of atherosclerosis.However,the anti-atherogenic mechanisms of M.fragrans are still to be addressed.In this study,we explored the effect of M.fragrans on lipid metabolism and inflammation and its mechanisms in THP-1-derived macrophages.The quantitative polymerase chain reaction and western blot analysis results showed that M.fragrans promotes cholesterol efflux from THP-1-derived macrophages and reduces intracellular total cholesterol,cholesterol ester,and free cholesterol contents in a dose-and a time-dependent manner.Further study found that liver X receptor alpha(LXRα)antagonist GGPP significantly blocked the upregulation of ABCA1 expression with M.fragrans treatment.In addition,chromatin immunoprecipitation assay confirmed that GATA binding protein 3(GATA3)can bind to the LXRαpromoter,and inhibition of GATA3 led to the downregulation of LXRαand ATP-binding cassette subfamily A member 1 expression.Furthermore,M.fragrans reduced lipid accumulation,followed by decreasing tumor necrosis factor-α,interleukin(IL)-6,and IL-1βand increasing IL-10 produced by THP-1-derived macrophages.Therefore,M.fragrans is identified as a valuable therapeutic medicine for atherosclerotic cardiovascular disease.  相似文献   

19.
The cholesterol biosynthetic pathway produces numerous signaling molecules. Oxysterols through liver X receptor (LXR) activation regulate cholesterol efflux, whereas the non-sterol mevalonate metabolite, geranylgeranyl pyrophosphate (GGPP), was recently demonstrated to inhibit ABCA1 expression directly, through antagonism of LXR and indirectly through enhanced RhoA geranylgeranylation. We used HMG-CoA reductase inhibitors (statins) to test the hypothesis that reduced synthesis of mevalonate metabolites would enhance cholesterol efflux and attenuate foam cell formation. Preincubation of THP-1 macrophages with atorvastatin, dose dependently (1-10 microm) stimulated cholesterol efflux to apolipoprotein AI (apoAI, 10-60%, p < 0.05) and high density lipoprotein (HDL(3)) (2-50%, p < 0.05), despite a significant decrease in cholesterol synthesis (2-90%). Atorvastatin also increased ABCA1 and ABCG1 mRNA abundance (30 and 35%, p < 0.05). Addition of mevalonate, GGPP or farnesyl pyrophosphate completely blocked the statin-induced increase in ABCA1 expression and apoAI-mediated cholesterol efflux. A role for RhoA was established, because two inhibitors of Rho protein activity, a geranylgeranyl transferase inhibitor and C3 exoenzyme, increased cholesterol efflux to apoAI (20-35%, p < 0.05), and macrophage expression of dominant-negative RhoA enhanced cholesterol efflux to apoAI (20%, p < 0.05). In addition, atorvastatin increased the RhoA levels in the cytosol fraction and decreased the membrane localization of RhoA. Atorvastatin treatment activated peroxisome proliferator activated receptor gamma and increased LXR-mediated gene expression suggesting that atorvastatin induces cholesterol efflux through a molecular cascade involving inhibition of RhoA signaling, leading to increased peroxisome proliferator activated receptor gamma activity, enhanced LXR activation, increased ABCA1 expression, and cholesterol efflux. Finally, statin treatment inhibited cholesteryl ester accumulation in macrophages challenged with atherogenic hypertriglyceridemic very low density lipoproteins indicating that statins can regulate foam cell formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号