首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-frequency respiratory mechanical impedance in the rat   总被引:1,自引:0,他引:1  
A modified forced oscillatory technique was used to determine the respiratory mechanical impedances in anesthetized, paralyzed rats between 0.25 and 10 Hz. From the total respiratory (Zrs) and pulmonary impedance (ZL), measured with pseudorandom oscillations applied at the airway opening before and after thoracotomy, respectively, the chest wall impedance (ZW) was calculated as ZW = Zrs - ZL. The pulmonary (RL) and chest wall resistances were both markedly frequency dependent: between 0.25 and 2 Hz they contributed equally to the total resistance falling from 81.4 +/- 18.3 (SD) at 0.25 Hz to 27.1 +/- 1.7 kPa.l-1 X s at 2 Hz. The pulmonary compliance (CL) decreased mildly, from 2.78 +/- 0.44 at 0.25 Hz to 2.36 +/- 0.39 ml/kPa at 2 Hz, and then increased at higher frequencies, whereas the chest wall compliance declined monotonously from 4.19 +/- 0.88 at 0.25 Hz to 1.93 +/- 0.14 ml/kPa at 10 Hz. Although the frequency dependence of ZW can be interpreted on the basis of parallel inhomogeneities alone, the sharp fall in RL together with the relatively constant CL suggests that at low frequencies significant losses are imposed by the non-Newtonian resistive properties of the lung tissue.  相似文献   

2.
For studiesinvestigating the mechanisms underlying the development of allergicconditions such as asthma, noninvasive methodologies for separatingairway and parenchymal mechanics in animal models are required. Todevelop such a method, seven Brown Norway rats were studied on threeoccasions over a 14-day period. After the baseline measurements, on thethird day inhaled methacholine was administered. Once lung functionreturned to the baseline level, a thoracotomy was performed to comparethe lung mechanics in the intact- and open-chest conditions. On eachoccasion, the rats were anesthetized, paralyzed, and intubated.Small-amplitude oscillations between 0.5 and 21 Hz were applied througha wave tube to obtain respiratory impedance (Zrs). Esophageal pressurewas measured to separate Zrs into pulmonary(ZL) and chest wall (Zw)components. A model containing a frequency-independent resistance andinertance and a tissue component, including tissue damping andelastance, was fitted to Zrs,ZL, and Zw spectra. Measurementsof Zrs, ZL, or Zw and the modelparameters calculated from them did not differ among tests. The numberof animals required to show group changes in lung mechanics wassignificantly lower when animals were measured noninvasively than whenthe group changes were calculated from open-chestmeasurements. In conclusion, the method reported in thisstudy can be used to separate airway and lung tissue mechanics noninvasively over a series of tests and can detect pulmonary constrictor responses for the airways and the parenchyma separately.

  相似文献   

3.
4.
Forced oscillatory impedance of the respiratory system at low frequencies   总被引:6,自引:0,他引:6  
Respiratory mechanical impedances were determined during voluntary apnea in five healthy subjects, by means of 0.25- to 5-Hz pseudo/random oscillations applied at the mouth. The total respiratory impedance was partitioned into pulmonary (ZL) and chest wall components with the esophageal balloon technique; corrections were made for the upper airway shunt impedance and the compressibility of alveolar gas. Neglect of these shunt effects did not qualitatively alter the frequency dependence of impedances but led to underestimations in impedance, especially in the chest wall resistance (Rw), which decreased by 20-30% at higher frequencies. The total resistance (Rrs) was markedly frequency dependent, falling from 0.47 +/- 0.06 (SD) at 0.25 Hz to 0.17 +/- 0.01 at 1 Hz and 0.15 +/- 0.01 kPa X l-1 X s at 5 Hz. The changes in Rrs were caused by the frequency dependence of Rw almost exclusively between 0.25 and 2 Hz and in most part between 2 and 5 Hz. The effective total respiratory (Crs,e) and pulmonary compliance were computed with corrections for pulmonary inertance derived from three- and five-parameter model fittings of ZL. Crs,e decreased from the static value (1.03 +/- 0.18 l X kPa-1) to a level of approximately 0.35 l X kPa-1 at 2-3 Hz; this change was primarily caused by the frequency-dependent behavior of chest wall compliance.  相似文献   

5.
We measured the frequency characteristics (at 10-40 Hz) of airway (Za) and tissue (Zt) impedances in cases of chronic obstructive pulmonary disease [asthmatic bronchitis (AB), chronic pulmonary emphysema (CPE)] and interstitial pneumonitis (IP) by use of an improved random noise oscillation and body box method. The results were then compared with those obtained for normal subjects. The real part of Za was markedly elevated in patients with AB but only slightly elevated in those with CPE. To interpret these data we used an electromechanical analogue including serial inhomogeneity with shunt impedance. From this model we concluded that AB causes both the central and peripheral airway resistances to increase, while CPE brings about a rise mainly in peripheral resistance. In IP patients, only the imaginary part of Zt decreased, which might reflect the decrease in both lung and chest wall compliance. In CPE patients, but not in AB patients, the real part of Zt fell. These data were consistent with the assumption that the decrease in mass per unit volume of lung tissue and hyperinflation of the chest wall in CPE patients might lower the tissue resistances.  相似文献   

6.
We measured total chest wall impedance (Zw), "pathway impedances" of the rib cage (Zrcpath), and diaphragm-abdomen (Zd-apath), and impedance of the belly wall including abdominal contents (Zbw+) in five subjects during sustained expiratory (change in average pleural pressure [Ppl] from relaxation = 10 and 20 cmH2O) and inspiratory (change in Ppl = -10 and -20 cmH2O) muscle contraction, using forced oscillatory techniques (0.5-4 Hz) we have previously reported for relaxation (J. Appl. Physiol. 66: 350-359, 1989). Chest wall configuration and mean lung volume were kept constant. Zw, Zrcpath, Zd-apath, and Zbw+ all increased greatly at each frequency during expiratory muscle contraction; increases were proportional to effort. Zw, Zrcpath, and Zd-apath increased greatly during inspiratory muscle contraction, but Zbw+ did not. Resistances and elastances calculated from each of the impedances showed the same changes during muscle contraction as the corresponding impedances. Each of the resistances decreased as frequency increased, independent of effort; elastances generally increased with frequency. These frequency dependencies were similar to those measured in relaxed or tetanized isolated muscle during sinusoidal stretching (P.M. Rack, J. Physiol. Lond. 183: 1-14, 1966). We conclude that during respiratory muscle contraction 1) chest wall impedance increases, 2) changes in regional chest wall impedances can be somewhat independent, depending on which muscles contract, and 3) increases in chest wall impedance are due, at least in part, to changes in the passive properties of the muscles themselves.  相似文献   

7.
The lumped six-element model of the respiratory system proposed by DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956) has often been used to analyze respiratory system impedance (Zrs) data. This model predicts a resonance (relative minimum in Zrs) at fr between 6 and 10 Hz and an antiresonance (relative maximum in Zrs) at far at higher frequencies (greater than 64 Hz). The far is due to the lumped tissue inertance (Iti) and the alveolar gas compression compliance (Cg). An fr and far have been recently reported in humans, but the far was shown to be not related to Iti and Cg, but instead it is the first acoustic antiresonance of the airways due to their axial dimensions). Zrs data to frequencies high enough to include the far have not been reported in dogs. In this study, we measured Zrs in dogs for frequencies between 5 and 320 Hz and found an fr at 7.5 +/- 1.6 Hz and two far at 97 +/- 13 and 231 +/- 27 Hz (far,1 and far,2, respectively). When breathing 80% He-20% O2, the fr shifted to 14 +/- 2 Hz, far,1 did not change (98 +/- 9 Hz), and far,2 increased to greater than 320 Hz. The behavior of fr and far,1 is consistent with the structure-function implied by the six-element model. However, the presence of an far,2 is not consistent with this model, because it is the airway acoustic antiresonance not represented in the model. These results indicate that, for frequencies that include the fr and far,1, the six-element model can be used to analyze Zrs data and reliable estimates of the model's parameters can be extracted by fitting the model to the data. However, more complex models must be used to analyze Zrs data that include far,2.  相似文献   

8.
A tracking impedance estimation technique was developed to follow the changes in total respiratory impedance (Zrs) during slow total lung capacity maneuvers in six anesthetized and mechanically ventilated BALB/c mice. Zrs was measured with the wave-tube technique and pseudorandom forced oscillations at nine frequencies between 4 and 38 Hz during inflation from a transrespiratory pressure of 0-20 cmH2O and subsequent deflation, each lasting for approximately 20 s. Zrs was averaged for 0.125 s and fitted by a model featuring airway resistance (Raw) and inertance, and tissue damping and elastance (H). Lower airway conductance (Glaw) was linearly related to volume above functional residual capacity (V) between 0 and 75-95% maximum V, with a mean slope of dGlaw/dV = 13.6 +/- 4.6 cmH2O-1. s-1. The interdependence of Raw and H was characterized by two distinct and closely linear relationships for the low- and high-volume regions, separated at approximately 40% maximum V. Comparison of Raw with the highest-frequency resistance of the total respiratory system revealed a marked volume-dependent contribution of tissue resistance to total respiratory system resistance, resulting in the overestimation of Raw by 19 +/- 8 and 163 +/- 40% at functional residual capacity and total lung capacity, respectively, whereas the lowest frequency reactance was proportional to H; these findings indicate that single-frequency resistance values may become inappropriate as surrogates of Raw when tissue impedance is changing.  相似文献   

9.
We measured forced expiratory volume in 1 s (FEV1), respiratory impedance (Zrs) from 4 to 60 Hz, and a multibreath N2 washout (MBNW) in 6 normal, 10 asthmatic, and 5 cystic fibrosis (CF) subjects. The MBNW were characterized by the mean dilution number (MDN) derived by a moment analysis. The Zrs spectra were characterized by the minimum resistance (Rmin), the drop in resistance (Rdrop) from 4 Hz to Rmin, and the first resonance frequency (Fr1). Measurements were repeated after bronchodilation in three normal and all asthmatic subjects. Before bronchodilation, six of the asthmatic subjects showed close to normal FEV1. The Zrs in the normal subjects showed low Rmin (1.9 +/- 0.7 cmH2O.l-1.s), Rdrop (0.4 +/- 0.4), and Fr1 (10 +/- 2 Hz). Four of the mildly obstructed asthmatic subjects had normal Zrs but elevated MDNs (i.e., abnormal ventilation distribution). The other six asthmatic subjects had significantly elevated Rmin (4.1 +/- 0.8), Rdrop (6.3 +/- 5.8), and Fr1 (34 +/- 0.4 Hz) and elevated MDNs. The CF patients had elevated Zrs features and MDNs. After bronchodilation, no changes in FEV1, MDN, or Zrs occurred in the normal subjects. All asthmatic subjects showed increased FEV1 and decreased MDN, but the Zrs was unaltered in the four asthmatic subjects whose base-line Zrs was normal. For the other six asthmatic subjects, there were large decreases in the Rmin, Rdrop, and Fr1. Finally, there was a poor correlation between the MDN and the Zrs features but high correlation between the Zrs features alone. These results imply that significant nonuniform peripheral airway obstruction can exist such that ventilation distribution is abnormal but Zrs from 4 to 60 Hz is not. Abnormalities in Zrs from 4 to 60 Hz occur only after significant overall obstruction in the peripheral and more central airways. Combining Zrs and the MBNW may permit us to infer whether the disease is predominantly in the lung periphery or in the more central airways.  相似文献   

10.
11.
The involvement of pulmonary circulation in the mechanical properties was studied in isolated rat lungs. Pulmonary input impedance (ZL) was measured at a mean transpulmonary pressure (Ptpmean) of 2 cmH2O before and after physiological perfusion with either blood or albumin. In these lungs and in a group of unperfused lungs, ZL was also measured at Ptpmean values between 1 and 8 cmH2O. Airway resistance (Raw) and parenchymal damping (G) and elastance (H) were estimated from ZL. End-expiratory lung volume (EELV) was measured by immersion before and after blood perfusion. The orientation of the elastin fibers relative to the basal membrane was assessed in additional unperfused and blood-perfused lungs. Pressurization of the pulmonary capillaries significantly decreased H by 31.5 +/- 3.7% and 18.7 +/- 2.7% for blood and albumin, respectively. Perfusion had no effect on Raw but markedly altered the Ptpmean dependences of G and H < 4 cmH2O, with significantly lower values than in the unperfused lungs. At a Ptpmean of 2 cmH2O, EELV increased by 31 +/- 11% (P = 0.01) following pressurization of the capillaries, and the elastin fibers became more parallel to the basal membrane. Because the organization of elastin fibers results in smaller H values of the individual alveolus, the higher H in the unperfused lungs is probably due to a partial alveolar collapse leading to a loss in lung volume. We conclude that the physiological pressure in the pulmonary capillaries is an important mechanical factor in the maintenance of the stability of the alveolar architecture.  相似文献   

12.
A new method for measuring total respiratory input impedance (Zrs), which ensures minimal motion of extrathoracic airway walls, was tested over frequencies of 4-30 Hz in 14 normal subjects and 10 patients with airway obstruction. It consists of applying pressure variations around the head, rather than at the mouth, so that transmural pressure across upper airway walls is equal to the small pressure drop across the pneumotachograph. Compared with reference Zrs values obtained by directly measuring airway wall motion with a head plethysmograph and correcting the data for it, the investigated method provided similar values for respiratory resistance at all frequencies (30 Hz, 3.67 +/- 2.24 cmH2O X 1(-1) X s compared with 3.55 +/- 2.00) but slightly overestimated respiratory reactance at the largest frequencies (30 Hz, 2.82 +/- 1.28 cmH2O X 1(-1) X s compared with 2.52 +/- 1.22, P less than 0.01). In contrast, when the data were not corrected for airway wall motion, resistance was largely underestimated, especially in patients (-48% at 30 Hz, P less than 0.001), and the reactance-frequency curve was shifted to the right. The investigated method is almost as accurate as the reference method, provides equally reproducible data, and is much simpler.  相似文献   

13.
Respiratory impedance may be studied by measuring airway flow (Vaw) when pressure is varied at the mouth (input impedance) or around the chest (transfer impedance). A third possibility, which had not been investigated so far, is to apply pressure variations simultaneously at the two places, that is to vary ambient pressure (Pam). This provides respiratory impedance to ambient pressure changes (Zapc = Vaw/Pam). In that situation airway impedance (Zaw) and tissue impedance (Zt) are mechanically in parallel, and both are in series with alveolar gas impedance (Zg): Zapc = Zaw + Zg + Zaw.Zg/Zt. We assessed the frequency dependence of Zapc from 0.05 to 2 Hz in nine normal subjects submitted to sinusoidal Pam changes of 2-4 kPa peak to peak. The real part of Zapc (Rapc) was of 6.2 kPa.1(-1).s at 0.05 Hz and decreased to 1.9 kPa.1(-1).s at 2 Hz. Similarly the effective compliance (Capc), computed from the imaginary part of Zapc, decreased from 0.045 1.kPa-1 at 0.05 Hz to 0.027 1.kPa-1 at 2 Hz. Breathing against an added resistance of 0.46 kPa.1(-1).s exaggerated the negative frequency dependence of both Rapc and Capc. When values of airway resistance and inertance derived from transfer impedance data were introduced, Zapc was used to compute effective tissue resistance (Rt) and compliance (Ct). Rt was found to decrease from 0.32 to 0.15 kPa.1(-1).s and Ct from 1.11 to 0.64 1.kPa-1 between 0.25 and 2 Hz. Ct was slightly lower with the added resistance. These results are in good agreement with the data obtained by other approaches.  相似文献   

14.
Mechanical parameters of the respiratory system are often estimated from respiratory impedances using lumped-element inverse models. One such six-element model is composed of an airway branch [with a resistance (Raw) and inertance (Iaw)] separated from a tissue branch [with a resistance (Rt), inertance (It), and compliance (Ct)] by a shunt compliance representing alveolar gas compression (Cg). Even though the airways are known to have frequency-dependent resistance and inertance, these inverse models have been composed of linear frequency-independent elements. In this study we investigated the use of inverse models where the airway branch was represented by a frequency-independent Raw and Iaw, a Raw that is linearly related to frequency and an Iaw that is independent of frequency, and a system of identical parallel tubes the impedance of which was computed from the tube radius and length. These inverse models were used to analyze airway and respiratory impedances between 2 and 1,024 Hz that were predicted from an anatomically detailed forward model. The forward model represented the airways by an asymmetrically branched network with a terminal impedance representative of known Cg, Rt, It, and Ct. For respiratory impedances between 2 and 128 Hz, all models fit the data reasonably well, and reasonably accurate estimates of Cg, Rt, It, and Ct were extracted from these data. For data above 200 Hz, however, only the multiple-tube model accurately fitted respiratory impedances (Zrs). This model fitted the Zrs data best when composed of 27 tubes, each having a radius of 0.148 cm and a length of 16.5 cm.  相似文献   

15.
To assess changes in total and regional chest wall properties during nonrespiratory maneuvers, we measured electromyographic activity of various chest wall muscles, esophageal pressure, and rib cage and abdominal surface displacements in six subjects before and during various static tasks. Subjects were seated at functional residual capacity, and quasi-sinusoidal forcing at the mouth (0.4 Hz, 500 ml) was imposed during the maneuver in the absence of active breathing. Magnitude of total chest wall impedance (magnitude of Zw) increased with effort during all maneuvers; changes in phase were small. Maneuvers involving primarily muscles of the neck and rib cage--holding a 10-kg weight, 10 kg of isometric tension between the arms, and isometric neck flexion--roughly doubled the magnitude of rib cage impedance (magnitude of Zrc) and, to a lesser degree, increased magnitude of diaphragm-abdomen impedance (magnitude of Zd-a). Unilateral and bilateral leg lifts, in addition to increasing magnitude of Zd-a, increased magnitude of Zrc. Passive 90 degrees rotation of the torso caused approximately 25% increases in magnitude of Zrc and magnitude of Zd-a; if the rotation was actively maintained by the trunk muscles, both regional impedances increased over 100%. Increases in magnitude of regional impedance were correlated to increases in regional electromyographic activity; changes in phase were small. Passive restriction of rib cage displacement by strapping increased magnitude of Zrc and magnitude of Zw but not magnitude of Zd-a, whereas abdominal strapping increased magnitude of Zd-a but did not affect magnitude of Zrc or magnitude of Zw.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Respiratory impedance (Zrs) was measured between 0.25 and 32 Hz in seven anesthetized and paralyzed patients by applying forced oscillation of low amplitude at the inlet of the endotracheal tube. Effective respiratory resistance (Rrs; in cmH2O.l-1.s) fell sharply from 6.2 +/- 2.1 (SD) at 0.25 Hz to 2.3 +/- 0.6 at 2 Hz. From then on, Rrs decreased slightly with frequency down to 1.5 +/- 0.5 at 32 Hz. Respiratory reactance (Xrs; in cmH2O.l-1.s) was -22.2 +/- 5.9 at 0.25 Hz and reached zero at approximately 14 Hz and 2.3 +/- 0.8 at 32 Hz. Effective respiratory elastance (Ers = -2pi x frequency x Xrs; in cmH2O/1) was 34.8 +/- 9.2 at 0.25 Hz and increased markedly with frequency up to 44.2 +/- 8.6 at 2 Hz. We interpreted Zrs data in terms of a T network mechanical model. We represented the proximal branch by central airway resistance and inertance. The shunt pathway accounted for bronchial distensibility and alveolar gas compressibility. The distal branch included a Newtonian resistance component for tissues and peripheral airways and a viscoelastic component for tissues. When the viscoelastic component was represented by a Kelvin body as in the model of Bates et al. (J. Appl. Physiol. 61: 873-880, 1986), a good fit was obtained over the entire frequency range, and reasonable values of parameters were estimated. The strong frequency dependence of Rrs and Ers observed below 2 Hz in our anesthetized paralyzed patients could be mainly interpreted in terms of tissue viscoelasticity. Nevertheless, the high Ers we found with low volume excursions suggests that tissues also exhibit plasticlike properties.  相似文献   

17.
Determination of the frequency response of pneumotachographs is needed whenever they are used to measure high-frequency flows, such as in the forced oscillation method. When screen and capillary pneumotachographs are calibrated using an adiabatic compression in a closed box as a reference impedance, they can be adequately described by a series of inertial-resistive elements. However, this type of reference impedance strongly differs from the actual respiratory impedance (ZL). We studied the frequency response of pneumotachographs up to 250 Hz in reference to the impedance of a compressible gas oscillating in a long tube, taken as a more generalizable model of actual ZL. We found that, with this device, the series resistance-inertance models fail to describe the frequency response of the pneumotachograph. However, when compressible effects in the pneumotachograph are taken into account by adding to the resistive models a compliance (Cpn) corresponding to the compression in half of the inner volume of the pneumotachograph, the agreement with experiments becomes satisfactory. Gas compression-related phenomena were demonstrated to be negligible only when the parameter omega Cpn magnitude of ZL is much smaller than 1 (omega pulsation). Results obtained in normal humans have shown that such a correction is required above 100 Hz. Similar correction at lower frequency might also be necessary in cases of large respiratory impedance (e.g., babies, subjects with pathological lungs, and intubated subjects).  相似文献   

18.
Past studies in humans and other species have revealed the presence of resonances and antiresonances, i.e., minima and maxima in respiratory system impedance (Zrs), at frequencies much higher than those commonly employed in clinical applications of the forced oscillation technique (FOT). To help understand the mechanisms behind the first occurrence of antiresonance in the Zrs spectrum, the frequency response of the rat was studied by using FOT at both low and high frequencies. We measured Zrs in both Wistar and PVG/c rats using the wave tube technique, with a FOT signal ranging from 2 to 900 Hz. We then compared the high-frequency parameters, i.e., the first antiresonant frequency (far,1) and the resistive part of Zrs at that frequency [Rrs(far,1)], with parameters obtained by fitting a modified constant-phase model to low-frequency Zrs spectra. The far,1 was 570 +/- 43 (SD) Hz and 456 +/- 16 Hz in Wistar and PVG/c rats, respectively, and it did not shift with respiratory gases of different densities (air, heliox, and a mixture of SF(6)). The far,1 and Rrs(far,1) were relatively independent of methacholine-induced bronchoconstriction but changed significantly with increasing transrespiratory pressures up to 20 cmH(2)O, in the same way as airway resistance but independently of changes to tissue parameters. These results suggest that, unlike the human situation, the first antiresonance in the rat is not primarily dependent on the acoustic dimensions of the respiratory system and can be explained by interactions between compliances and inertances localized to the airways, but this most likely does not include airway wall compliance.  相似文献   

19.
Recent studies on respiratory impedance (Zrs) have predicted that at frequencies greater than 64 Hz a second resonance will occur. Furthermore, if one intends to fit a model more complicated than the simple series combination of a resistance, inertance, and compliance to Zrs data, the only way to ensure statistically reliable parameter estimates is to include data surrounding this second resonance. An additional question, however, is whether the resulting parameters are physiologically meaningful. We obtained input impedance data from eight healthy adult humans using discrete frequency forced oscillations from 4 to 200 Hz. Three resonant frequencies were seen: 8 +/- 2, 151 +/- 10, and 182 +/- 16 Hz. A seven-parameter lumped element model provided an excellent fit to the data in all subjects. This model consists of an airway resistance (Raw), which is linearly dependent on frequency, and airway inertance separated from a tissue resistance, inertance, and compliance by a shunt compliance (Cg) thought to represent gas compressibility. Model estimates of Raw and Cg were compared with those suggested by measurement of Raw and thoracic gas volume using a plethysmograph. In all subjects the model Raw and Cg were significantly lower than and not correlated with the corresponding plethysmographic measurement. We hypothesize that the statistically reliable but physiologically inconsistent parameters are a consequence of the distorting influence of airway wall compliance and/or airway quarter-wave resonance. Such factors are not inherent to the seven-parameter model.  相似文献   

20.
We investigated the relationship between the site of airway obstruction and the frequency dependence (FD) of lung acoustic impedance (ZL). The real (RL) and imaginary (XL) parts of ZL were measured by forced random noise in excised left pig lungs, before (base line) and after 1) no airway obstruction (controls, n = 10), 2) insufflation of 1-mm (B1, n = 5) or 2-mm (B2, n = 7) beads, and 3) partial reversible obstruction of lower lobar (LL) and then main-stem (MS) bronchus (n = 4). The beads caused both partial and total obstruction of airways with internal diameters of 2 mm (B1) and 2-6 mm (B2). Compared with base line, a negative FD of RL appeared from 4 to 10 Hz in LL, B1, and B2 obstructions. The FD of XL greater than 20 Hz increased in MS and LL obstruction exclusively and was the ZL feature that most clearly differentiated central from peripheral obstruction. In this experimental model, the anatomic limit distal from which obstruction no longer causes the "central" type of ZL change lies in airways with internal diameters notably greater than 2 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号