首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The keratinocyte line SK-v harbors only integrated human papillomavirus type 16 (HPV 16) DNA sequences, although it originated from vulvar Bowenoid papules predominantly containing multiple copies of free HPV 16 genomes. We have cloned a fragment of cell DNA that contains the integrated HPV 16 DNA sequences and have shown that integration interrupts the HPV 16 genome in open reading frames E2 and L2 and creates a deletion of 813 base pairs. This allows the expression of open reading frames E6 and E7, as actually substantiated by Northern (RNA) blot analysis of SK-v RNAs with subgenomic HPV 16 RNA probes. Using a unique flanking cellular DNA sequence as the probe, we have shown that the integration of HPV 16 sequences had already occurred in the premalignant lesions from which the SK-v cell line was derived.  相似文献   

3.
4.
Sequencing of the E5 open reading frame (ORF) of human papillomavirus type 16 revealed an additional nucleotide, a thymidine residue, at position 3903 compared with the original sequence (Seedorf et al., Virology 145:181-185, 1985). The additional T had two effects; first, in reading frame 2, in which the original E5 ORF was predicted, the additional T changed the reading frame downstream of position 3903 to create an ORF, which we designated E5, that terminated at position 4018 and potentially encoded a 52-amino-acid polypeptide. Secondly, in reading frame 3, a new ORF was created (positions 3807 to 4097), which we propose is the authentic papillomavirus type 16 E5 ORF. It contained a methionine residue and encoded an additional 82 amino acids. Both ORFs have been cloned into bacterial expression vectors (pATH), and the fusion proteins have been used to generate polyclonal antibodies in rabbits.  相似文献   

5.
The human cervical carcinoma cell line ME180 was examined for human papillomavirus (HPV) DNA and RNA. The integrated DNA of a presumably new HPV type showing a relationship closer to HPV39 than to HPV18 was cloned and sequenced. HPV sequences from the E6-E7-E1 region are expressed as poly(A)+ RNAs.  相似文献   

6.
7.
8.
9.
Rhesus Papillomavirus type 1 (RhPV-1) was recently cloned from a rhesus monkey lymph node metastasis of a penile squamous cell carcinoma. In this paper, we demonstrate that RhPV-1 cooperates with the activated ras oncogene to transform primary cells at a level comparable to human papillomavirus type 16. The viral DNAs were cloned such that their expression was under the control of their natural promoter elements. Unlike human papillomavirus type 16, RhPV-1 DNA cooperated with ras independently of the hormone dexamethasone. However, dexamethasone did have a positive influence on the ability of some RhPV-1 cotransformed cells to grow in soft-agar assays. The transformed cells are highly tumorigenic in vivo in nude mice.  相似文献   

10.
11.
A synthetic E7 gene of human papillomavirus (HPV) type 16 was generated that consists entirely of preferred human codons. Expression analysis of the synthetic E7 gene in human and animal cells showed levels of E7 protein 20- to 100-fold higher than those obtained with wild-type E7. Enhanced expression of E7 protein resulted from highly efficient translation, as well as increased stability of the E7 mRNA due to its codon optimization. Higher levels of E7 protein in cells transfected with synthetic E7 correlated with significant loss of cell viability in various human cell lines. In contrast, lower E7 protein expression driven by the wild-type gene resulted in a slight induction of cell proliferation. Furthermore, mice inoculated with plasmids expressing the synthetic E7 gene produced significantly higher levels of E7 antibodies than littermates injected with wild-type E7, suggesting that synthetic E7 may be useful for DNA immunization studies and the development of genetic vaccines against HPV-16. In view of these results, we hypothesize that HPVs may have retained a pattern of G + C content and codon usage distinct from that of their host cells in response to selective pressure. Thus, the nonhuman codon bias may have been conserved by HPVs to prevent compromising viability of the host cells by excessive viral early protein expression, as well as to evade the immune system.  相似文献   

12.
The close association of human papillomavirus type 16 DNA with a majority of cervical carcinomas implies some role for the virus in this type of cancer. To define the transforming properties of HPV-16 DNA in vitro we have now performed transfection experiments on baby rat kidney cells using HPV-16 DNA in conjunction with an activated ras gene. We have demonstrated that a 6.6-kb DNA fragment, containing the early genes of HPV-16 under the control of Moloney murine leukaemia virus long terminal repeats (MoMuLV-LTRs), cooperates with EJ-ras in transforming these cells. Both DNAs are required and neither alone is effective. The cooperating activity appears to reside in a protein or proteins derived from the E6/E7 region of the HPV-16 genome.  相似文献   

13.
The study of human papillomavirus type 16 (HPV-16) replication has been impaired because of the lack of a cell culture system that stably maintains viral replication. Recently, cervical epithelial cell populations that stably maintain HPV-16 replicons at a copy number of approximately 1,000 per cell were derived from an HPV-16-infected patient (W12 cell clone 20863 [W12-E cells]). We used neutral/neutral and neutral/alkaline two-dimensional gel electrophoretic techniques to characterize HPV-16 DNA replication in these cells. When W12-E cells were maintained in an undifferentiated state mimicking the nonproductive stage of the life cycle, HPV-16 DNA was found to replicate primarily by theta structures in a bidirectional manner. The initiation site of HPV-16 DNA replication was mapped to approximately nucleotide 100, and the termination site was mapped to between nucleotides 3398 and 5990. To study the productive stage of HPV-16 DNA replication, W12-E cells were grown under culture conditions that promote differentiation of epithelial cell types. Under these conditions, where virus-like particles were detected, the mode of viral DNA replication changed from theta structure to what is apparently a rolling circle mode. Additionally, CIN 612-9E cells, which were derived from an HPV-31-infected patient and harbor HPV-31 extrachromosomally, exhibited the same switch in the mode of DNA replication upon induction of differentiation. These data argue that a fundamental switch in the mechanism of viral DNA replication occurs during the life cycle of the papillomavirus.  相似文献   

14.
15.
To examine the biological properties of the bovine papillomavirus type 1 (BPV) and human papillomavirus type 16 (HPV16) E5 genes, each was cloned separately into a retroviral expression vector and helper-free recombinant viruses were generated in packaging cell lines. The BPV E5 retroviruses efficiently caused morphologic and tumorigenic transformation of cultured lines of murine fibroblasts, whereas the HPV16 E5 viruses were inactive in these assays. In contrast, infection of the p117 established line of murine epidermal keratinocytes with either the BPV or the HPV16 E5 retrovirus resulted in the generation of tumorigenic cells. Pam212 murine keratinocytes were also transformed to tumorigenicity by the HPV16 E5 gene but not by the gene carrying a frameshift mutation. These results establish that the HPV16 E5 gene is a transforming gene in cells related to its normal host epithelial cells.  相似文献   

16.
The complete nucleotide sequence of the circular double-stranded DNA of the genital human papillomavirus type 6b (HPV6b) comprising 7902 bp was determined and compared with the DNA sequences of human papillomavirus type 1a (HPV1a) and bovine papillomavirus type 1 (BPV1). All major open reading frames are located on one DNA strand only. Their arrangement reveals that the genomic organization of HPV6b is similar to that of HPV1a and BPV1. The putative early region includes two large open reading frames E1 and E2 with marked amino acid sequence homologies to HPV1a and BPV1 which are flanked by several smaller frames. The internal part of E2 completely overlaps with another open reading frame E4. The putative late region contains two large open reading frames L1 and L2. The L1 amino acid sequences are highly conserved among analyzed papillomavirus types. By sequence comparison, potential promoter, splicing and polyadenylation signals can be localized in HPV6b DNA suggesting possible mechanisms of genital papillomavirus gene expression.  相似文献   

17.
We have sequenced 1730 bp of human papilloma virus type 18 (HPV 18) DNA containing the open reading frames (ORF) E6, E7, the N-terminal part of E1 and, additionally, 120 bp of the N-terminal part of L1. Based on these sequencing data, together with the human papilloma virus type 16 (HPV 16) DNA sequence published recently, we identified and cloned the ORF E6, E7, E1 and L1 of HPV 18 and the ORF E6, E7, E1, E4, E5, L2 and L1 of HPV 16 into prokaryotic expression vectors. The expression system used provides fusions to the N-terminal part of the MS2 polymerase gene controlled by the heat-inducible lambda PL promoter. Using the purified fusion proteins as immunogens we raised antisera against the proteins encoded by the ORF E6, E7 and E1 of HPV 18 as well as those encoded by the ORF E6, E7, E4 and L1 of HPV 16. By Western blot analysis we could show that the E7 gene product is the most abundant protein in cell lines containing HPV 16 or HPV 18 DNA. It is a cytoplasmic protein of 15 kd in the SiHa and the CaSki cell lines which contain HPV 16 DNA, and 12 kd in the HeLa, the C4-1 and the SW756 cell lines which contain HPV 18 DNA. These results were confirmed by in vitro translation of hybrid-selected HPV 16 and HPV 18 specific poly(A)+ RNA from SiHa, CaSki and HeLa cells. Additionally, these experiments led to the identification of an 11-kd E6 and a 10-kd E4 protein in the CaSki cell line as well as a 70-kd E1 protein in HeLa cells.  相似文献   

18.
DNA vaccines encoding the human papillomavirus type-16 (HPV-16) E6 and E7 oncoproteins genetically fused to the human herpes simplex virus type 1 (HSV-1) gD protein were tested in mice for induction of T cell-mediated immunity and protection against tumor cell challenge. Hybrid genes, generated after insertion of E6 or E7-encoding sequences into internal sites of the gD-encoding gene, were transcribed in vitro and the chimeric proteins were expressed at the surface of in vitro-transfected mammalian cells. Female C57BL/6 mice immunized with 4 intramuscular doses (100 microg of DNA/dose) of the DNA vaccines encoding E7 efficiently generated E7-specific CD8(+) T cells. Vaccination of mice with the DNA vaccines encoding the E7, or both E6 and E7, conferred complete protection to challenges from TC-1 tumor cells and partial therapeutic effect (40%) in mice inoculated with TC-1 cells on the same day or 5 days prior to the first vaccine dose.  相似文献   

19.
We have established several HLA-A2.1-transgenic rabbit lines to provide a host to study CD8(+) T cell responses during virus infections. HLA-A2.1 protein expression was detected on cell surfaces within various organ tissues. Continuous cultured cells from these transgenic rabbits were capable of presenting both endogenous and exogenous HLA-A2.1-restricted epitopes to an HLA-A2.1-restricted epitope-specific CTL clone. A DNA vaccine containing an HLA-A2.1-restricted human papillomavirus type 16 E7 epitope (amino acid residues 82-90) stimulated epitope-specific CTLs in both PBLs and spleen cells of transgenic rabbits. In addition, vaccinated transgenic rabbits were protected against infection with a mutant cottontail rabbit papillomavirus DNA containing an embedded human papillomavirus type 16 E7/82-90 epitope. Complete protection was achieved using a multivalent epitope DNA vaccine based on epitope selection from cottontail rabbit papillomavirus E1 using MHC class I epitope prediction software. HLA-A2.1-transgenic rabbits will be an important preclinical animal model system to study virus-host interactions and to assess specific targets for immunotherapy.  相似文献   

20.
The complete nucleotide sequence of human papillomavirus type 1a (7811 nucleotides) has been established. The overall organization of the viral genome is different from that of other related papovaviruses (SV40, BKV, polyoma). Firstly, genetic information seems to be coded by one strand. Secondly, no significant homology is found with SV40 or polyoma coding sequence for either DNA or deducted protein sequences. The relatedness of human and bovine papillomaviruses is revealed by a conserved coding sequence in the two species. Two regions can be defined on the viral genome: the putative early region contains two large open reading frames of 1446 and 966 nucleotides, together with several split ones, and corresponds to the transforming part of the bovine papillomavirus type 1 genome, and the remaining sequences, which include two open reading frames likely to encode structural polypeptide(s). The DNA sequence is analysed and putative signals for regulation of gene expression, and homologies with the Alu family of human ubiquitous repeats and the SV40 72-bp repeat are outlines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号