首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A subset of mammalian genes is controlled by genomic imprinting. This process causes a gene to be expressed from only one chromosome homologue depending on whether it originally came from the egg or the sperm. Parental origin-specific gene regulation is controlled by epigenetic modifications to DNA and chromatin. Genomic imprinting is therefore a useful model system to study the epigenetic control of genome function. Here we consider the value of the mouse as an experimental organism to address questions about the role of imprinted genes, about the regulation of mono-allelic gene expression and about the evolution of the imprinting function and mechanism.  相似文献   

4.
5.
6.
The mechanisms underlying the phenomenon of genomic imprinting remain poorly understood. In one instance, a differentially methylated imprinting control region (ICR) at the H19 locus has been shown to involve a methylation-sensitive chromatin insulator function that apparently partitions the neighboring Igf2 and H19 genes in different expression domains in a parent of origin-dependent manner. It is not known, however, if this mechanism is unique to the Igf2/H19 locus or if insulator function is a common feature in the regulation of imprinted genes. To address this question, we have studied an ICR in the Kcnq1 locus that regulates long range repression on the paternally derived p57Kip2 and Kcnq1 alleles in an imprinting domain that includes Igf2 and H19. We show that this ICR appears to possess a unidirectional chromatin insulator function in somatic cells of both mesodermal and endodermal origins. Moreover, we document that CpG methylation regulates this insulator function suggesting that a methylation-sensitive chromatin insulator is a common theme in the phenomenon of genomic imprinting.  相似文献   

7.
Mammalian genes subject to genomic imprinting often form clusters and are regulated by long-range mechanisms. The distal imprinted domain of mouse chromosome 7 is orthologous to the Beckwith-Wiedemann syndrome domain in human chromosome 11p15.5 and contains at least 13 imprinted genes. This domain consists of two subdomains, which are respectively regulated by an imprinting center. We here report the finished-quality sequence of a 0.6-Mb region encompassing the more centromeric subdomain. The sequence contains four imprinted genes (Ascl2/Mash2, Ins2, Igf2 and H19) and reveals previously unidentified CpG islands and tandem repeats, which may be features of imprinted genes. Most interestingly, a unique 210-kb segment consisting almost exclusively of tandem repeats and retroelements is identified. This segment, located between Th and Ins2, has features of heterochromatin-forming DNA and is highly methylated at CpG sites. The segment exhibits asynchronous replication on the parental chromosomes, a feature of the imprinted domains. We propose that this repeat segment could serve either as a boundary between the two subdomains or as a target for epigenetic chromatin modifications that regulate imprinting.  相似文献   

8.
Lloyd VK  Sinclair DA  Grigliatti TA 《Genetics》1999,151(4):1503-1516
Genomic imprinting is a phenomenon in which the expression of a gene or chromosomal region depends on the sex of the individual transmitting it. The term imprinting was first coined to describe parent-specific chromosome behavior in the dipteran insect Sciara and has since been described in many organisms, including other insects, plants, fish, and mammals. In this article we describe a mini-X chromosome in Drosophila melanogaster that shows genomic imprinting of at least three closely linked genes. The imprinting of these genes is observed as mosaic silencing when the genes are transmitted by the male parent, in contrast to essentially wild-type expression when the same genes are maternally transmitted. We show that the imprint is due to the sex of the parent rather than to a conventional maternal effect, differential mitotic instability of the mini-X chromosome, or an allele-specific effect. Finally, we have examined the effects of classical modifiers of position-effect variegation on the maintenance and the establishment of the imprint. Factors that modify position-effect variegation alter the somatic expression but not the establishment of the imprint. This suggests that chromatin structure is important in maintenance of the imprint, but a separate mechanism may be responsible for its initiation.  相似文献   

9.
10.
11.
Epigenetic mechanisms are extensively utilized during mammalian development. Specific patterns of gene expression are established during cell fate decisions, maintained as differentiation progresses, and often augmented as more specialized cell types are required. Much of what is known about these mechanisms comes from the study of two distinct epigenetic phenomena: genomic imprinting and X-chromosome inactivation. In the case of genomic imprinting, alleles are expressed in a parent-of-origin-dependent manner, whereas X-chromosome inactivation in females requires that only one X chromosome is active in each somatic nucleus. As model systems for epigenetic regulation, genomic imprinting and X-chromosome inactivation have identified and elucidated the numerous regulatory mechanisms that function throughout the genome during development.  相似文献   

12.
13.

Background  

Cdkn1c encodes an embryonic cyclin-dependant kinase inhibitor that acts to negatively regulate cell proliferation and, in some tissues, to actively direct differentiation. This gene, which is an imprinted gene expressed only from the maternal allele, lies within a complex region on mouse distal chromosome 7, called the IC2 domain, which contains several other imprinted genes. Studies on mouse embryos suggest a key role for genomic imprinting in regulating embryonic growth and this has led to the proposal that imprinting evolved as a consequence of the mismatched contribution of parental resources in mammals.  相似文献   

14.
Lloyd V 《Genetica》2000,109(1-2):35-44
Genetic imprinting is a form of epigenetic silencing. But with a twist. The twist is that while imprinting results in the silencing of genes, chromosome regions or entire chromosome sets, this silencing occurs only after transmission of the imprinted region by one sex of parent. Thus genetic imprinting reflects intertwined levels of epigenetic and developmental modulation of gene expression. Imprinting has been well documented and studied in Drosophila, however, these studies have remained largely unknown due to nothing more significant than differences in terminology. Imprinting in Drosophilais invariably associated with heterochromatin or regions with unusual chromatin structure. The imprint appears to spread from imprinted centers that reside within heterochromatin and these are, seemingly, the only regions that are normally imprinted in Drosophila. This is significant as it implies that while imprinting occurs in Drosophila, it is generally without phenotypic consequence. Hence the evolution of imprinting, at least in Drosophila, is unlikely to be driven by the function of specific imprinted genes. Thus, the study of imprinting in Drosophilahas the potential to illuminate the mechanism and biological function of imprinting, and challenge models based solely on imprinting of mammalian genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Human 11p15.5, as well as its orthologous mouse 7F4/F5, is known as the imprinting domain extending from IPL/Ipl to H19. OBPH1 and Obph1 are located beyond the presumed imprinting boundary on the IPL/Ipl side. We determined full-length cDNAs and complete genomic structures of both orthologues. We also investigated their precise imprinting and methylation status. The orthologues resembled each other in genomic structure and in the position of the 5' CpG island and were expressed ubiquitously. OBPH1 and Obph1 were predominantly expressed from the maternal allele only in placenta, with hypo- and not differentially methylated 5' CpG islands in both species. These results suggested that the imprinting domain would extend beyond the presumed imprinting boundary and that methylation of the 5' CpG island was not associated with the imprinting status in either species. It remains to be elucidated whether the gene is under the control of the KIP2/LIT1 subdomain or is regulated by a specific mechanism. Analysis of the precise genomic sequence around the region should help resolve this question.  相似文献   

16.
17.
18.
The view that autosomal gene expression is controlled exclusively by protein trans-acting factors has been challenged recently by the identification of RNA molecules that regulate chromatin. In the majority of cases where RNA molecules are implicated in DNA control, the molecular mechanisms are unknown, in large part because the RNA.protein complexes are uncharacterized. Here, we identify a novel set of RNA-binding proteins that are well known for their function in chromatin regulation. The RNA-interacting proteins are components of the mammalian DNA methylation system. Genomic methylation controls chromatin in the context of transposon silencing, imprinting, and X chromosome dosage compensation. DNA methyltransferases (DNMTs) catalyze methylation of cytosines in CGs. The methyl-CGs are recognized by methyl-DNA-binding domain (MBD) proteins, which recruit histone deacetylases and chromatin remodeling proteins to effect silencing. We show that a subset of the DNMTs and MBD proteins can form RNA.protein complexes. We characterize the MBD protein RNA-binding activity and show that it is distinct from the methyl-CG-binding domain and mediates a high affinity interaction with RNA. The RNA and methyl-CG binding properties of the MBD proteins are mutually exclusive. We speculate that DNMTs and MBD proteins allow RNA molecules to participate in DNA methylation-mediated chromatin control.  相似文献   

19.
20.
表观遗传学与人类疾病的研究进展   总被引:22,自引:0,他引:22  
张永彪  褚嘉祐 《遗传》2005,27(3):466-472
在过去的几年里,人们对表观遗传疾病的机理有了新的认识,这些疾病与染色质重塑、基因组印记、X染色体失活以及非编码RNA调控这4个表观遗传过程相关。这4个过程通过调节染色质结构,在染色体或基因簇水平上对基因表达进行调控;异常调控导致复杂的突变且表现为出生前后生长发育和神经功能的异常。对这些疾病的探讨为表观遗传机制的研究提供了很好的模型,进而有助于生物医学的研究。文章就表观遗传学和表观遗传疾病机制的研究进展做一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号