首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of different anionic polymers on the kinetic properties of ionic channels formed by neutral gramicidin A (gA) and its positively charged analogs gramicidin-tris(2-aminoethyl)amine (gram-TAEA) and gramicidin-ethylenediamine (gram-EDA) in a bilayer lipid membrane were studied using a method of sensitized photoinactivation. The addition of Konig's polyanion caused substantial deceleration of the photoinactivation kinetics of gram-TAEA channels, which expose three positive charges to the aqueous phase at both sides of the membrane. In contrast, channels formed of gram-EDA, which exposes one positive charge, and neutral gA channels were insensitive to Konig's polyanion. The effect strongly depended on the nature of the polyanion added, namely: DNA, RNA, polyacrylic acid, and polyglutamic acid were inactive, whereas modified polyacrylic acid induced deceleration of the channel kinetics at high concentrations. In addition, DNA was able to prevent the action of Konig's polyanion. In single-channel experiments, the addition of Konig's polyanion resulted in the appearance of long-lived gram-TAEA channels. The deceleration of the gram-TAEA channel kinetics was ascribed to electrostatic interaction of the polyanion with gram-TAEA that reduces the mobility of gram-TAEA monomers and dimers in the membrane via clustering of channels.  相似文献   

2.
3.
The interaction of biotin-binding proteins with biotinylated gramicidin (gA5XB) was studied by monitoring single-channel activity and sensitized photoinactivation kinetics. It was discovered that the addition of streptavidin or avidin to the bathing solutions of a bilayer lipid membrane (BLM) with incorporated gA5XB induced the opening of a channel characterized by approximately doubled single-channel conductance and extremely long open-state duration. We believe that the deceleration of the photoinactivation kinetics observed here with streptavidin and previously (Rokitskaya, T.I., Y.N. Antonenko, E.A. Kotova, A. Anastasiadis, and F. Separovic. 2000. Biochemistry. 39:13053-13058) with avidin reflects the formation of long-lived channels of this type. Both opening and closing of the double-conductance channels occurred via a transient sub-state of the conductance coinciding with that of the usual single-channel transition. The appearance of the double-conductance channels after the addition of streptavidin was preceded by bursts of fast fluctuations of the current with the open state duration of the individual events of 60 ms. The streptavidin-induced double-conductance channels appeared to be inherent only to the gramicidin analogue with a biotin group linked to the COOH terminus through a long linker arm. Including biotinylated phosphatidylethanolamine into the BLM prevented the formation of the double-conductance channels even with the excess streptavidin. In view of the results obtained here, it is suggested that the double-conductance channel represents a tandem of two neighboring gA5XB channels with their COOH termini being cross-linked by the bound streptavidin at both sides of the BLM. The finding that streptavidin induces the formation of the tandem gramicidin channel comprising two channels functioning in concert is considered to be relevant to the physiologically important phenomenon of ligand-induced receptor oligomerization.  相似文献   

4.
Membrane protein functioning basically depends on the supramolecular structure of the proteins which can be modulated by specific interactions with external ligands. The effect of a water-soluble protein bearing specific binding sites on the kinetics of ionic channels formed by gramicidin A (gA) in planar bilayer lipid membranes (BLM) has been studied using three independent approaches: (1) sensitized photoinactivation, (2) single-channel, and (3) autocorrelation measurements of current fluctuations. As shown previously [Rokitskaya, T. I., et al. (1996) Biochim. Biophys. Acta 1275, 221], the time course of the flash-induced current decrease in most cases follows a single-exponential decay with an exponential factor (tau) that corresponds to the gA single-channel lifetime. Addition of avidin does not affect tau for gA channels, but causes a dramatic increase in tau for channels formed by gA5XB, a biotinylated analogue of gA. This effect is reversed by addition of an excess of biotin to the bathing solution. The average single-channel duration of gA5XB was about 3.6 s as revealed by single-channel recording of the BLM current. After prolonged incubation with avidin, a long-lasting open state of the gA5XB channel appeared which did not close for more than 10 min. The data on gA5XB photoinactivation kinetics and single-channel measurements were confirmed by analysis of the corresponding power spectra of the current fluctuations obtained in the control, in the presence of avidin, and after the addition of biotin. We infer that avidin produces a deceleration of gA5XB channel kinetics by motional restriction of gA5XB monomers and dimers upon the formation of avidin and gA5XB complexes, which would stabilize the channel state and thus increase the single-channel lifetime.  相似文献   

5.
Functioning of membrane proteins, in particular ionic channels, can be modulated by alteration of their arrangement in membranes. We addressed this issue by studying the effect of different chain length polylysines on the kinetics of ionic channels formed in a bilayer lipid membrane (BLM) by O-pyromellitylgramicidin carrying three negative charges at the C-terminus. The method of sensitized photoinactivation was applied to the analysis of the channel association-dissociation kinetics (characterized by the exponential factor of the curve describing the time course of the flash-induced decrease in the transmembrane current, tau). Addition of polylysine to the bathing solutions of BLM led to the deceleration of the photoinactivation kinetics, i.e. to the increase in tau. It was shown here that for a series of polylysines differing in their chain lengths, the value of tau grew as their concentration increased above a threshold level until at a certain concentration of each polylysine tau reached maximum. At higher polylysine concentrations tau began to decrease and finally became close to the control level observed in the absence of polylysine. With lengthening of the polylysine chain the maximum value of tau increased, the concentration dependence became steeper, and the threshold concentration decreased. The increase in the ionic strength of the medium shifted the concentration dependence of tau to higher polylysine concentrations and decreased the maximum value of tau. It was concluded that the increase in tau was caused by the formation of domains of O-pyromellitylgramicidin molecules induced by binding of polylysines. This can be related to functional aspects of polycation-induced sequestering of negatively charged transmembrane peptides in neutral membranes.  相似文献   

6.
Biotin-avidin (or streptavidin) high affinity binding has been widely applied as a universal tool for basic research as well as diagnostic and therapeutic purposes. Here we studied the interaction of streptavidin with ionic channels formed by biotinylated gramicidin in planar bilayer lipid membranes (BLM) using the method of sensitized photoinactivation. As shown previously, the addition of streptavidin leads to a profound increase in the lifetime (tau) of gA5XB, a biotinylated analog of gramicidin A with a linker arm of five aminocaproyl groups (Rokitskaya et al. (2000) Biochemistry, 39, 13053-13058). The present study has revealed that the increase in tau is related to multivalent interaction of streptavidin with biotinylated gramicidin, i.e., to formation of a complex of streptavidin with several gramicidin channels, whereas binding of streptavidin to a single channel does not change the value of tau. A rather long linker arm attaching biotin to the C-terminus of gramicidin appeared to be required for the multivalent interaction of streptavidin with gramicidin channels, as the increase in tau was not observed with channels formed by gA2XB, the biotinylated gramicidin analog with a linker arm comprising only two aminocaproyl groups. However, the formation of a stoichiometric (1 : 1) complex of streptavidin with gA2XB apparently occurred. The multivalent interaction of streptavidin with gA5XB disappeared if biotinylated lipids were included into the diphytanoylphosphatidylcholine membrane. It is suggested that the slowing of gramicidin channel kinetics provoked by streptavidin binding is due to membrane-mediated elastic interactions between two neighboring channels.  相似文献   

7.
Photosensitized efficacy of tetrasulfonated phthalocyanines of zinc, aluminum and nickel (ZnPcS4, AlPcS4 and NiPcS4, respectively) as studied by gramicidin channel (gA) photoinactivation was compared with adsorption of the dyes on the surface of a bilayer lipid membrane as measured by the inner field compensation method. The adsorption of the negatively charged phthalocyanines on diphytanoylphosphatidylcholine (DPhPC) membranes led to formation of a negative boundary potential difference between the membrane/water interfaces. Good correlation was shown between the photodynamic activity and the membrane binding of the three metallophthalocyanines. ZnPcS4 appeared to be the most potent of these photosensitizers, while NiPcS4 was completely ineffective. All of these phthalocyanines displayed no binding and negligible gA photoinactivation with membranes formed of glycerol monooleate (GMO), whereas Rose Bengal exhibited significant binding and photodynamic efficacy with GMO membranes. Gramicidin photoinactivation in the presence of AlPcS4, being insensitive to the ionic strength of the bathing solution, was inhibited by fluoride and attenuated by phosphate ions. A blue shift of the fluorescence peak position of ZnPcS4 dissolved in ethanol was elicited by phosphate, similarly to fluoride, which was indicative of the coordination interaction of these ions with the central metal atom of the phthalocyanine macrocycle. This interaction was enhanced in the medium modeling the water-membrane interface. The results obtained imply that binding of tetrasulfonated metallophthalocyanines to phospholipid membranes is determined primarily by metal-phosphate coordination.  相似文献   

8.
The method of sensitized photoinactivation based on the photosensitized damage of gramicidin A (gA) molecules was applied here to study ionic channels formed by minigramicidin (the 11-residue analogue of gramicidin A) in a planar bilayer lipid membrane (BLM) of different thickness. Irradiation of BLM with a single flash of visible light in the presence of a photosensitizer (aluminum phthalocyanine or Rose Bengal) generating singlet oxygen provoked a decrease in the minigramicidin-induced electric current across BLM, the kinetics of which had the characteristic time of several seconds, as observed with gA. For gA, there is good correlation between the characteristic time of photoinactivation and the single-channel lifetime. In contrast to the covalent dimer of gA characterized by extremely long single-channel lifetime and the absence of current relaxation upon flash excitation, the covalent head-to-head dimer of minigramicidin displayed the flash-induced current decrease with the kinetics being strongly dependent on the membrane thickness. The current decrease became slower both upon increasing the concentration of the minigramicidin covalent dimer and upon including cholesterol in the membrane composition. These data in combination with the quadratic dependence of the current on the peptide concentration can be rationalized by hypothesizing that the macroscopic current across BLM measured at high concentrations of the peptide is provided by dimers of minigramicidin covalent dimers in the double beta(5.7)-helical conformation having the lifetime of about 0.4 s, while single channels with the lifetime of 0.01 s, observed at a very low peptide concentration, correspond to the single-stranded beta(6.3)-helical conformation. Alternatively the results can be explained by clustering of channels at high concentrations of the minigramicidin covalent dimer.  相似文献   

9.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

10.
Insertion of charged groups at the N-terminus of the gramicidin A (gA) amino acid sequence is considered to be fatal for peptide channel-forming activity because of hindrance to the head-to-head dimer formation. Here the induction of ionic conductivity in planar bilayer lipid membranes (BLM) was studied with gA analogs having lysine either in the first ([Lys1]gA) or the third ([Lys3]gA) position. If added to the bathing solution at neutral or acidic pH, these analogs, being protonated and thus positively charged, were unable to induce ionic current across BLM. By contrast, at pH 11 the induction of BLM conductivity was observed with both lysine-substituted analogs. Based on the dependence of the macroscopic current on the side of the peptide addition, sensitivity to calcium ions and susceptibility to sensitized photoinactivation, as well as on the single-channel properties of the analogs, we surmise that at alkaline pH [Lys1]gA formed channels with predominantly single-stranded structure of head-to-head helical dimers, whereas [Lys3]gA open channels had the double-stranded helical structure. CD spectra of the lysine-substituted analogs in liposomes were shown to be pH-dependent.  相似文献   

11.
The pentadecapeptide gramicidin A, which is known to form highly conductive ion channels in a bilayer lipid membrane by assembling as transmembrane head-to-head dimers, can be modified by attaching a biotin group to its C-terminus through an aminocaproyl spacer. Such biotinylated gramicidin A analogues also form ion channels in a hydrophobic lipid bilayer, exposing the biotin group to the aqueous bathing solution. Interaction of the biotinylated gramicidin channels with (strept)avidin has previously been shown to result in the appearance of a long-lasting open state with a doubled transition amplitude in single-channel traces and a deceleration of the macroscopic current kinetics as studied by the sensitized photoinactivation method. Here this interaction was studied further by using streptavidin mutants with weakened biotin binding affinities. The Stv-F120 mutant, having a substantially reduced biotin binding affinity, exhibited an efficacy similar to that of natural streptavidin in inducing both double-conductance channel formation and deceleration of the photoinactivation kinetics of the biotinylated gramicidin having a long linker arm. The Stv-A23D27 mutant with a severely weakened biotin binding affinity was ineffective in eliciting the double-conductance channels, but decelerated noticeably the photoinactivation kinetics of the long linker biotinylated gramicidin. However, the marked difference in the effects of the mutant and natural streptavidins was smaller than expected on the basis of the substantially reduced biotin binding affinity of the Stv-A23D27 mutant. This may suggest direct interaction of this mutant streptavidin with a lipid membrane in the process of its binding to biotinylated gramicidin channels. The role of linker arm length in the interaction of biotinylated gramicidins with streptavidin was revealed in experiments with a short linker gramicidin. This gramicidin analogue appeared to be unable to form double-conductance channels, though several lines of evidence were indicative of its binding by streptavidin. The data obtained show the conditions under which the interaction of streptavidin with biotinylated gramicidin leads to the formation of the double-conductance tandem channels composed of two cross-linked transmembrane dimers.  相似文献   

12.
The effects of ionic strength (10-1,000 mM) on the gating of batrachotoxin-activated rat brain sodium channels were studied in neutral and in negatively charged lipid bilayers. In neutral bilayers, increasing the ionic strength of the extracellular solution, shifted the voltage dependence of the open probability (gating curve) of the sodium channel to more positive membrane potentials. On the other hand, increasing the intracellular ionic strength shifted the gating curve to more negative membrane potentials. Ionic strength shifted the voltage dependence of both opening and closing rate constants of the channel in analogous ways to its effects on gating curves. The voltage sensitivities of the rate constants were not affected by ionic strength. The effects of ionic strength on the gating of sodium channels reconstituted in negatively charged bilayers were qualitatively the same as in neutral bilayers. However, important quantitative differences were noticed: in low ionic strength conditions (10-150 mM), the presence of negative charges on the membrane surface induced an extra voltage shift on the gating curve of sodium channels in relation to neutral bilayers. It is concluded that: (a) asymmetric negative surface charge densities in the extracellular (1e-/533A2) and intracellular (1e-/1,231A2) sides of the sodium channel could explain the voltage shifts caused by ionic strength on the gating curve of the channel in neutral bilayers. These surface charges create negative electric fields in both the extracellular and intracellular sides of the channel. Said electric fields interfere with gating charge movements that occur during the opening and closing of sodium channels; (b) the voltage shifts caused by ionic strength on the gating curve of sodium channels can be accounted by voltage shifts in both the opening and closing rate constants; (c) net negative surface charges on the channel's molecule do not affect the intrinsic gating properties of sodium channels but are essential in determining the relative position of the channel's gating curve; (d) provided the ionic strength is below 150 mM, the gating machinery of the sodium channel molecule is able to sense the electric field created by surface changes on the lipid membrane. I propose that during the opening and closing of sodium channels, the gating charges involved in this process are asymmetrically displaced in relation to the plane of the bilayer. Simple electrostatic calculations suggest that gating charge movements are influenced by membrane electrostatic potentials at distances of 48 and 28 A away from the plane of the membrane in the extracellular sides of the channel, respectively.  相似文献   

13.
The method of sensitized photoinactivation based on the photosensitized damage of gramicidin A (gA) molecules was applied here to study ionic channels formed by minigramicidin (the 11-residue analogue of gramicidin A) in a planar bilayer lipid membrane (BLM) of different thickness. Irradiation of BLM with a single flash of visible light in the presence of a photosensitizer (aluminum phthalocyanine or Rose Bengal) generating singlet oxygen provoked a decrease in the minigramicidin-induced electric current across BLM, the kinetics of which had the characteristic time of several seconds, as observed with gA. For gA, there is good correlation between the characteristic time of photoinactivation and the single-channel lifetime. In contrast to the covalent dimer of gA characterized by extremely long single-channel lifetime and the absence of current relaxation upon flash excitation, the covalent head-to-head dimer of minigramicidin displayed the flash-induced current decrease with the kinetics being strongly dependent on the membrane thickness. The current decrease became slower both upon increasing the concentration of the minigramicidin covalent dimer and upon including cholesterol in the membrane composition. These data in combination with the quadratic dependence of the current on the peptide concentration can be rationalized by hypothesizing that the macroscopic current across BLM measured at high concentrations of the peptide is provided by dimers of minigramicidin covalent dimers in the double β5.7-helical conformation having the lifetime of about 0.4 s, while single channels with the lifetime of 0.01 s, observed at a very low peptide concentration, correspond to the single-stranded β6.3-helical conformation. Alternatively the results can be explained by clustering of channels at high concentrations of the minigramicidin covalent dimer.  相似文献   

14.
Steady-state kinetics for the reaction of Rhodobacter capsulatus bacterial cytochrome c peroxidase (BCCP) with its substrate cytochrome c(2) were investigated. The Rb. capsulatus BCCP is dependent on calcium for activation as previously shown for the Pseudomonas aeruginosa BCCP and Paracoccus denitrificans enzymes. Furthermore, the activity shows a bell-shaped pH dependence with optimum at pH 7.0. Enzyme activity is greatest at low ionic strength and drops off steeply as ionic strength increases, resulting in an apparent interaction domain charge product of -13. All cytochromes c(2) show an asymmetric distribution of surface charge, with a concentration of 14 positive charges near the exposed heme edge of Rb. capsulatus c(2) which potentially may interact with approximately 6 negative charges, localized near the edge of the high-potential heme of the Rb. capsulatus BCCP. To test this proposal, we constructed charge reversal mutants of the 14 positively charged residues located on the front face of Rb. capsulatus cytochrome c(2) and examined their effect on steady-state kinetics with BCCP. Mutated residues in Rb. capsulatus cytochrome c(2) that showed the greatest effects on binding and enzyme activity are K12E, K14E, K54E, K84E, K93E, and K99E, which is consistent with the site of electron transfer being located at the heme edge. We conclude that a combination of long-range, nonspecific electrostatic interactions as well as localized salt bridges between, e.g., cytochrome c(2) K12, K14, K54, and K99 with BCCP D194, D241, and D6, account for the observed kinetics.  相似文献   

15.
Photosensitized efficacy of tetrasulfonated phthalocyanines of zinc, aluminum and nickel (ZnPcS(4), AlPcS(4) and NiPcS(4), respectively) as studied by gramicidin channel (gA) photoinactivation was compared with adsorption of the dyes on the surface of a bilayer lipid membrane as measured by the inner field compensation method. The adsorption of the negatively charged phthalocyanines on diphytanoylphosphatidylcholine (DPhPC) membranes led to formation of a negative boundary potential difference between the membrane/water interfaces. Good correlation was shown between the photodynamic activity and the membrane binding of the three metallophthalocyanines. ZnPcS(4) appeared to be the most potent of these photosensitizers, while NiPcS(4) was completely ineffective. All of these phthalocyanines displayed no binding and negligible gA photoinactivation with membranes formed of glycerol monooleate (GMO), whereas Rose Bengal exhibited significant binding and photodynamic efficacy with GMO membranes. Gramicidin photoinactivation in the presence of AlPcS(4), being insensitive to the ionic strength of the bathing solution, was inhibited by fluoride and attenuated by phosphate ions. A blue shift of the fluorescence peak position of ZnPcS(4) dissolved in ethanol was elicited by phosphate, similarly to fluoride, which was indicative of the coordination interaction of these ions with the central metal atom of the phthalocyanine macrocycle. This interaction was enhanced in the medium modeling the water-membrane interface. The results obtained imply that binding of tetrasulfonated metallophthalocyanines to phospholipid membranes is determined primarily by metal-phosphate coordination.  相似文献   

16.
《Biophysical journal》2021,120(23):5309-5321
Gramicidin A (gA) is a hydrophobic pentadecapeptide readily incorporating into a planar bilayer lipid membrane (BLM), thereby inducing a large macroscopic current across the BLM. This current results from ion-channel formation due to head-to-head transbilayer dimerization of gA monomers with rapidly established monomer-dimer equilibrium. Any disturbance of the equilibrium, e.g., by sensitized photoinactivation of a portion of gA monomers, causes relaxation toward a new equilibrium state. According to previous studies, the characteristic relaxation time of the gA-mediated electric current decreases as the current increases upon elevating the gA concentration in the membrane. Here, we report data on the current relaxation kinetics for gA analogs with N-terminal valine replaced by glycine or tyrosine. Surprisingly, the relaxation time increased rather than decreased upon elevation of the total membrane conductance induced by these gA analogs, thus contradicting the classical kinetic scheme. We developed a general theoretical model that accounts for lateral interaction of monomers and dimers mediated by membrane elastic deformations. The modified kinetic scheme of the gramicidin dimerization predicts the reverse dependence of the relaxation time on membrane conductance for gA analogs, with a decreased dimerization constant that is in a good agreement with our experimental data. The equilibration process may be also modulated by incorporation of other peptides (“impurities”) into the lipid membrane.  相似文献   

17.
The effect of binding reduced tuna mitochondrial cytochrome c to negatively charged lipid bilayer vesicles at low ionic strength on the kinetics of electron transfer to various oxidants was studied by stopped-flow spectrophotometry. Binding strongly stimulated (up to 100-fold) the rate of reaction with the positively charged cobalt phenanthroline ion, whereas the rate of reaction with the negatively charged ferricyanide ion was greatly inhibited (up to 60-fold), as compared with the same systems either at high ionic strength or at low ionic strength either in the presence of electrically neutral vesicles or in the absence of vesicles. Reactions of tuna cytochrome c with uncharged or electrically neutral oxidants such as benzoquinone and Rhodospirillum rubrum cytochrome c2 were unaffected by binding to vesicles, suggesting little or no effect of membrane association on cytochrome structure or accessibility of the heme center. The kinetic effects were largest at lower cytochrome c to vesicle ratios, where there was a greater degree of exposure of negatively charged regions on the membrane. The reduction of cobalt phenanthroline and ferricyanide by bound cytochrome c proceeded by nonexponential kinetics, as compared with the monophasic kinetics observed in the absence of vesicles. This was probably due to the heterogeneous distribution of vesicle sizes which exists at a given lipid to protein ratio. Nonlinear oxidant concentration dependencies were observed for cobalt phenanthroline oxidation of membrane-bound cytochrome c, consistent with a (minimal) two-step kinetic mechanism involving association of the oxidant with the membrane followed by electron transfer. Based on a comparison of second-order rate constants as a function of lipid to protein mole ratio, binding of cytochrome c to the bilayer increased the efficiency of the cobalt phenanthroline reaction by a factor of approximately 500 at the highest lipid:protein ratio used. The results suggest a mechanism involving attractive and repulsive electrostatic interactions between the negatively charged bilayer and the electrically charged oxidants, which increase or decrease their effective concentrations at the membrane surface.  相似文献   

18.
Hwang TC  Koeppe RE  Andersen OS 《Biochemistry》2003,42(46):13646-13658
Genistein, a generic tyrosine kinase inhibitor, has been used extensively as a tool to investigate the possible regulation of membrane function by tyrosine phosphorylation. Genistein, in micromolar concentrations, alters the function of numerous ion channels and other membrane proteins, but only in few cases has it been demonstrated that the changes in membrane protein (ion channel) function are due to changes in a protein's phosphorylation status. The major common denominator characterizing proteins that are modulated by genistein seems to be that they are imbedded into, and span, the bilayer component of the plasma membrane. We therefore explored whether genistein could alter ion channel function by a bilayer-mediated mechanism and examined genistein's effect on gramicidin A (gA) channels in planar phospholipid bilayers. gA channels form by transmembrane dimerization of two nonconducting subunits, and genistein potentiates gA channel activity by increasing the appearance rate and prolonging the lifetime of bilayer-spanning gA dimers. That is, genistein shifts the equilibrium between nonconducting monomers and conducting dimers in favor of the bilayer-spanning dimers; the changes in channel activity therefore cannot be due to changes in bilayer fluidity. To obtain further insights into the mechanism underlying this modulation of gA channel function, we examined the effects of genistein on channels formed by gA analogues that differ in amino acid sequence. For a given channel length, the effects of genistein on gA dimerization do not depend on the specific sequence, or the chirality, of the channel-forming gA analogues. In contrast, when we change the channel length (by decreasing or increasing the number of amino acid residues in the sequence), or the bilayer thickness (by changing methylene groups in the acyl chains), the magnitude of genistein's effect increases with increasing hydrophobic mismatch between the channel length and the bilayer thickness. These results strongly suggest that genistein alters bilayer mechanical properties, which in turn modulates channel function. This bilayer-mediated mechanism is likely to apply to other pharmacological reagents and membrane proteins.  相似文献   

19.
The voltage-dependent gating of single, batrachotoxin-activated Na channels from rat brain was studied in planar lipid bilayers composed of negatively charged or neutral phospholipids. The relationship between the probability of finding the Na channel in the open state and the membrane potential (Po vs. Vm) was determined in symmetrical NaCl, both in the absence of free Ca2+ and after the addition of Ca2+ to the extracellular side of the channel, the intracellular side, or both. In the absence of Ca2+, neither the midpoint (V0.5) of the Po vs. Vm relation, nor the steepness of the gating curve, was affected by the charge on the bilayer lipid. The addition of 7.5 mM Ca2+ to the external side caused a depolarizing shift in V0.5. This depolarizing shift was approximately 17 mV in neutral bilayers and approximately 25 mV in negatively charged bilayers. The addition of the same concentration of Ca2+ to only the intracellular side caused hyperpolarizing shifts in V0.5 of approximately 7 mV (neutral bilayers) and approximately 14 mV (negatively charged bilayers). The symmetrical addition of Ca2+ caused a small depolarizing shift in Po vs. Vm. We conclude that: (a) the Na channel protein possesses negatively charged groups on both its inner and outer surfaces. Charges on both surfaces affect channel gating but those on the outer surface exert a stronger influence. (b) Negative surface charges on the membrane phospholipid are close enough to the channel's gating machinery to substantially affect its operation. Charges on the inner and outer surfaces of the membrane lipid affect gating symmetrically. (c) Effects on steady-state Na channel activation are consistent with a simple superposition of contributions to the local electrostatic potential from charges on the channel protein and the membrane lipid.  相似文献   

20.
Applying the technique of 'tip-dip' to mitochondria, we have shown the existence in this organelle of a cationic channel of large conductance, which is blocked by a 13-residue peptide possessing the sequence of the N-terminal extremity of the cytochrome c oxidase subunit IV precursor. To study the submitochondrial localization of the channel, the effect of trypsin on isolated channels and on entire mitochondria were compared. One side of isolated channels is sensitive to trypsin, which eliminates the voltage dependence. Channels isolated from trypsinized mitochondria were devoid of voltage dependence and were blocked by the peptide. This suggests a localization of the channel on the outer membrane. Consistent with this hypothesis, the channel was observed with the highest frequency in outer membrane fractions purified by different procedures, either from bovine adrenal cortex or from rat liver mitochondria. Such a localization is also consistent with digitonin solubilization experiments. The channel was solubilized before the inner membrane marker, cytochrome c oxidase. The orientation of the channel was inferred from its trypsin sensitivity and its potential dependence: a transmembrane potential (inside negative) will close the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号