首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dry granular inoculant of Rhizobium was prepared from sodium alginate and peralite. High numbers of two groundnut (Arachis hypogaea) Rhizobium strains, NC 92 and TAL 1000 used to prepare inoculants survived in dry granules beyond 180 days. The viable counts were 9.72 and 9.91 log10 rhizobia g-1 of dry granules for NC 92 and TAL 1000, respectively compared to 8.0 log10 rhizobia g-1 of peat inoculant for NC 92 at the end of six months storage. The granular inoculant was free from contaminants. In a pot culture experiment the granular inoculant applied to the soil gave similar results when seeds were dressed with a peat inoculant; nodulation and growth of groundnut were similar. The major advantage of this inoculant is that, it can be stored in a dry state without losing much viability.  相似文献   

2.
We have examined the survival of four cowpea rhizobia strains in Jamaican peat to determine its suitability as inoculant carrier. All strains survived well since more than 107 cells of rhizobia per gram of peat were recovered from the inoculant after storage for 6 months at 30C. Survival of cowpea rhizobia was better when inoculants were stored at 4 than 30C. The native strains JRC29 and JRW3 (isolated in Jamaica) survived much better than the introduced strains MI-50A and IRC291 (isolated in West Africa). Survival of cowpea rhizobia was not significantly increased when peat was mixed with 1% sucrose. Our results suggest that Jamaican peat may be used as a carrier for inoculant production.  相似文献   

3.
A field experiment was conducted to assess the response to inoculation with rhizobia in a clay loam soil of the Nile Delta using faba bean (Vicia faba) for two successive winter seasons (1985/6 and 1986/7). Three selected strains of Rhizobium leguminosarum, TAL 634, NRC 65 and TAL 1400, were used singly or in combination as peat-based inocula in 1985/6 winter season. Strain TAL 1400 was replaced by strain F9 in the 1986/7 winter season. A significant seed yield response was obtained only with strain TAL 1400, in the 1985/6 season. In the 1986/7 season, no significant yield response was observed with any of the strains. The serotyping of nodules collected in the 1985/6 season showed that strain TAL 1400 was more competitive than either the indigenous rhizobia or the two inoculant strains. However, the majority of nodules formed in the 1986/7 season were formed from strains other than the inoculant ones.  相似文献   

4.
Seed of arrowleaf clover (Trifolium vesiculosum Savi) were inoculated with a streptomycin resistant mutant ofRhizobium leguminosarum biovartrifolii and planted on the surface of a Norwood fine sandy loam and at 10 and 25 mm depths. Populations of rhizobia declined from an excess of 10,000 seed−1 immediately after inoculation to less than 100 within three to four days after sowing on the soil surface when water was the peat inoculant adhesive. Gum arabic as the adhesive promoted the survival of rhizobia. Populations of rhizobia on surface sown seed declined much more rapidly than on seed buried in soil. Although, the soil was nearly air dry, rhizobia on buried seed survived at populations exceeding 1,000 seed−1. The maximum soil temperatures ranged between 21 and 36°C over the sampling time and did not seem to have a major influence on short term survival of rhizobia. Delayed germination of seed due to the higher temperature would indirectly influence the number of viable rhizobia present at germination.  相似文献   

5.
Experiments were undertaken to test whether peat-based legume seed inoculants, which are prepared with liquid cultures that have been deliberately diluted, can attain and sustain acceptable numbers of viable rhizobia. Liquid cultures of Rhizobium japonicum and Rhizobium phaseoli were diluted to give 108, 107, or 106 cells per ml, using either deionized water, quarter-strength yeast-mannitol broth, yeast-sucrose broth, or yeast-water. The variously diluted cultures were incorporated into gamma-irradiated peat, and the numbers of viable rhizobia were determined at intervals. In all of the inoculant formulations, the numbers of rhizobia reached similarly high ceiling values by 1 week after incorporation, irrespective not only of the number of cells added initially but also of the nature of the diluent. During week 1 of growth, similar multiplication patterns of the diluted liquid cultures were observed in two different peats. Numbers of rhizobia surviving in the various inoculant formulations were not markedly different after 6 months of storage at 28°C. The method of inoculant preparation did not affect the nitrogen fixation effectiveness of the Rhizobium strains.  相似文献   

6.
Selected Bradyrhizobium japonicum strains inoculated on soybean seeds often fail to occupy a significant proportion of nodules when a competitor rhizobial population is established in the soil. This competition problem could result from a genetic/ physiological advantage of the adapted soil population over the introduced inoculant or from a positional advantage, as the soil population already occupies the soil profile where the roots will penetrate, whereas the inoculant remains concentrated around the seeds. Here, we have assessed the contribution of these factors with a laboratory model in which a rhizobial population is established in sterile vermiculite. We observed that the wild-type strain B. japonicum LP 3004 was able to grow in pots with N-free plant nutrient solution-watered vermiculite for six or seven generations with a duplication rate of at least 0.7 day(-1). In addition, the rhizobial population persisted for 3 months with 10(6)-10(7) colony-forming units ml(-1) of the vermiculite-retained solution. N-starved, young rhizobial cultures are more efficient in performing several steps along their early association with soybean roots. However, N starvation during growth of rhizobia used for seed inoculation did not enhance their competitiveness against a 1 month vermiculite-established rhizobial population, which occupied more than 72% of the nodules. When a similarly established rhizobial population was recovered from the vermiculite and homogeneously suspended in plant nutrient solution, these cells were significantly less competitive (29% of nodules occupied) than rhizobia obtained from a fresh, logarithmic culture in a N-poor minimal medium, thus indicating that cell position rather than intrinsic competitiveness was the determinant for nodule occupation.  相似文献   

7.
The success of rhizobial inoculation on plant roots is often limited by several factors, including environmental conditions, the number of infective cells applied, the presence of competing indigenous (native) rhizobia, and the inoculation method. Many approaches have been taken to solve the problem of inoculant competition by naturalized populations of compatible rhizobia present in soil, but so far without a satisfactory solution. We used antibiotic resistance and molecular profiles as tools to find a reliable and accurate method for competitiveness assay between introduced Bradyrhizobium sp. strains and indigenous rhizobia strains that nodulate peanut in Argentina. The positional advantage of rhizobia soil population for nodulation was assessed using a laboratory model in which a rhizobial population is established in sterile vermiculite. We observed an increase in nodule number per plant and nodule occupancy for strains established in vermiculite. In field experiments, only 9% of total nodules were formed by bacteria inoculated by direct coating of seed, whereas 78% of nodules were formed by bacteria inoculated in the furrow at seeding. In each case, the other nodules were formed by indigenous strains or by both strains (inoculated and indigenous). These findings indicate a positional advantage of native rhizobia or in-furrow inoculated rhizobia for nodulation in peanut.  相似文献   

8.
Soil bacteria (rhizobia) of the genus Bradyrhizobium form symbiotic relationships with peanut root cells and fix atmospheric nitrogen by converting it to nitrogenous compounds. Inoculation of peanut with rhizobia can enhance the plant’s ability to fix nitrogen from the air and thereby reduce the requirement for nitrogen fertiliser. We evaluated three Bradyrhizobium sp. strains for effect on root nodulation and on pod yield of peanut in Argentina soils, using laboratory and field experiments. Of these, strain C‐145 was the most effective in laboratory studies. In‐furrow inoculation with this strain produced increased nodule number, relative to seed inoculation. However, pod yield was not increased significantly by either type of inoculation. In view of the inconsistent response of peanut to inoculation, we examined the effect of indigenous strains of bradyrhizobia. The high degree of nodulation and nitrogen fixation produced by indigenous rhizobia were sufficient for maximal yield under the field and inoculation conditions used in this study. The data are important for future investigation of alternative inoculant strains and conditions for improving peanut production.  相似文献   

9.
Inoculation of legumes under field conditions with superior nitrogen-fixing rhizobia does not always result in the desired yield increase. Often it is observed that the inoculum strain fails to occupy a significant proportion of the nodules. The introduced inoculant strains have to compete with the indigenous, often ineffective, nitrogen-fixing rhizobial population at different levels. The success of inoculation depends to a large extent on the ratio of the inoculant cells to indigenous rhizobia. However, intrinsic characteristics of the inoculant and indigenous rhizobia, and their responses to abiotic and biotic environmental variables, also influence the outcome of inoculation. In this review, the genetic basis for “efficient host-bacteria interaction” is reviewed. In addition, environmental factors that influence competition and saprophytic competence of rhizobia are discussed.  相似文献   

10.
Rhizobium strains used in inoculants for Trifolium spp., Medicago spp., Glycine max, and Lotus pedunculatus were isolated from nodules of these legumes grown in soils into which the rhizobia had been introduced 4 to 8 years before. Isolations were made from a total of 420 nodules. Nodule occupancy by the inoculant strains varied from 17.7% for a soybean strain to 100% in the case of L. pedunculatus whose specific rhizobia did not occur in the soils studied. In general, inoculant strains isolated from nodules did not differ in effectiveness from cultures of the same strains concurrently maintained in lyophilized form. The average effectiveness of all of the isolates (identified and unidentified) from a legume was 7.1 to 73.3% higher than that of the unidentified isolates alone, demonstrating the prolonged effect that a single-seed inoculation has on the rhizobial population in a soil which had not been planted with legumes before. Relatively weak recovery of a Rhizobium japonicum strain introduced into soil 4 years after soybean seed inoculated with a different strain had been planted in the same soil confirmed the advantage of a resident population over an introduced inoculant strain.  相似文献   

11.
In the American Midwest, superior inoculant rhizobia applied to soybeans usually occupy only 5 to 20% of nodules, and response to inoculation is the exception rather than the rule. Attempts to overcome this problem have met with limited success. We evaluated the ability of Bradyrhizobium japonicum, supplied as a seed coat inoculant, to stay abreast of the infectible region of the developing soybean root system. The rhizoplane population of the inoculant strain declined with distance from site of placement, the decrease being more pronounced on lateral than on taproots. This decline was paralleled by a decrease in inoculant-strain nodule occupancy. Inoculant bradyrhizobia contributed little to nodulation of lateral roots, which at pod-fill accounted for more than 50% of nodule number and mass, and were major contributors to acetylene reduction activity. From these data, it appears that inoculant bradyrhizobia are competitive with indigenous soil strains at the point of placement in the soil but have limited mobility and so are incapable of sustaining high populations throughout the developing root system. The result is low nodule occupancy by the inoculant strain in the tapand lateral roots. Future studies should address aspects of inoculant placement and establishment.  相似文献   

12.
Two strains (RCR 1001 and 1044) and a commercial inoculant (Okadin) ofRhizobium leguminosarum biovarviceae were tested for their ability to survive in autoclaved clay soil for up to four months under heat, salinity and drought stress. Resistance to heat was tested by incubating rhizobia in soil at 27, 37 and 42 °C. Tolerance of rhizobia to salinity was investigated by growing rhizobia in soil salinized with 1 and 2 % NaCl (m/m). Drought resistance was tested by subjecting bacteria to soil moisture contents of 20, 10 and 5%. Strain RCR 1001 was more resistant to heat and nodulated faba bean better than other tested strains. A commercial inoculant Okadin survived more (plate count method) and nodulated faba bean (plant infectivity, most probable number, MPN) at moisture content of 5% and 2% NaCl. Although, strains RCR 1001 and 1044 resisted these stress conditions (plate count) they lost their abilities to nodulate faba bean (MPN-test). There is a possibility for selection of effective rhizobia which are more tolerant to harsh conditions.  相似文献   

13.
Inoculating legumes with commercial rhizobial inoculants is a common agriculture practice. Generally, inoculants are sold in liquid or in solid forms (mixed with carrier). The production of inoculants involves a step in which a high number of cells are produced, followed by the product formulation. This process is largely governed by the cost related to the medium used for rhizobial growth and by the availability of a carrier source (peat) for production of solid inoculant. Some industrial and agricultural by-products (e.g. cheese whey, malt sprouts) contain growth factors such as nitrogen and carbon, which can support growth of rhizobia. Other agro-industrial wastes (e.g. plant compost, filtermud, fly-ash) can be used as a carrier for rhizobial inoculant. More recently, wastewater sludge, a worldwide recyclable waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge). Sludge usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals are usually below the recommended level. In some cases, growth conditions can be optimized by a sludge pre-treatment or by the addition of nutrients. Inoculants produced in wastewater sludge are efficient for nodulation and nitrogen fixation with legumes as compared to standard inoculants. This new approach described in this review offers a safe environmental alternative for both waste treatment/disposal and inoculant production.  相似文献   

14.
Mineral oil, peanut oil and soybean oil were compared with water and gum arabic for their suitability as adhesives for seed inoculation with peat inoculants. Inoculated seeds were stored at 4, 28 and 34°C, and sampled after 1, 3 and 9 days to determine the survival of rhizobia. Germination and nodulation tests were performed on the inoculated seeds. Results showed that oils were suitable adhesives for peat inoculants. Although the oils initially bound less inoculant to the seed, the number of surviving rhizobia was similar to that obtained by the gum arabic treatment after storage at 28 and 34°C for 3 and 9 days. An interesting finding of this experiment was that peanut and soybean oils were superior to gum arabic in supporting significantly higher numbers of chickpea rhizobia at 34°C. Inoculated seeds tested for germination and nodulation showed no adverse effects from the oil treatments. Oils hold good potential as adhesives for seed application in inoculation technology.H.J. Hoben and P. Somasegaran are with the NIFTAL Project, University of Hawaii, 1000 Holomua Avenue, Paia, HI 96779-9744, USA. Nwe Nwe Aung is with the Institute of Agriculture, Yezin, Pyinmana, Burma. Ui-Gum Kang is with the Yeongnam Crop Experiment Station, Rural Development Administration, P.O. Box 6, Milyang, Korea.  相似文献   

15.
The symbiotic and competitive performances of two highly effective rhizobia nodulating French bean P. vulgaris were studied in silty loam and clayey soils. The experiments were carried out to address the performance of two rhizobia strains (CE3 and Ph. 163] and the mixture thereof with the two major cultivated bean cultivars in two soil types from major growing French bean areas in Egypt. Clay and silty loam soils from Menoufia and Ismailia respectively were planted with Bronco and Giza 6 phaseolus bean cultivars. The data obtained from this study indicated that rhizobial inoculation of Giza 6 cultivar in clayey soil showed a positive response to inoculation in terms of nodule numbers and dry weight. This response was also positive in dry matter and biomass accumulation by the plants. The inoculant of strain CE3 enhanced plant growth and N-uptake relative to Ph. 163. However, the mixed inoculant strains were not always as good as single strain inoculants. The competition for nodulation was assessed using two techniques namely fluorescent antibody testing (FA) and REP-PCR fingerprinting. The nodule occupancy by inoculant strain Ph. 163 in both soils occupied 30-40% and 38-50 of nodules of cultivar Bronco. The mixed inocula resulted in higher proportions of nodules containing CE3 in silty loam soil and Ph. 163 in clayey soil. The native rhizobia occupied at least 50% of the nodules on the Bronco cultivar. For cultivar Giza 6, the native rhizobia were more competitive with the inoculant strains. Therefore, we suggest using the studied strains as commercial inocula for phaseolus bean.  相似文献   

16.
Abstract A genetically modified strain of the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum biovar viciae was used to inoculate a typical host, pea, and a control non-host cereal crop in the field. The inoculant was monitored for survival and spread from the site of application, and for genetic interactions with the native population. It could be identified by chromosomally located antibiotic resistance markers and additional markers conferred by the transposon Tn 5 inserted on its conjugative symbiotic plasmid. These markers facilitated enumeration of the strain on selective agar, enabling survival and spread to be monitored over a six year period. Although culturable cell numbers dropped two to three orders of magnitude after the first year, subsequently they remained around 102 viable cells per g soil, even in subplots where only the non-host cereals had been grown. However, peas did give the inoculant a small survival advantage compared with non-hosts. Soil cultivation appeared to play a major role in inoculant dissemination from the site of application. Transfer of the Tn 5 marker to other rhizobia could be monitored by screening for isolates with Tn 5 -encoded antibiotic resistance in the absence of the inoculant chromosomal markers. Over three years, more than 4000 pea root nodules were screened for indigenous rhizobia that had acquired the Tn 5 -marked symbiotic plasmid from the inoculant. None were detected, although overall about 2% of nodules contained the inoculant strain, and transfer of the Tn 5 -marked symbiotic plasmid to three out of four R. leguminosarum biovar viciae isolates from the field site could be demonstrated under laboratory conditions.  相似文献   

17.

Background and aims

Inoculation of legumes at sowing with rhizobia has arguably been one of the most cost-effective practices in modern agriculture. Critical aspects of inoculant quality are rhizobial counts at manufacture/registration and shelf (product) life.

Methods

In order to re-evaluate the Australian standards for peat-based inoculants, we assessed numbers of rhizobia (rhizobial counts) and presence of contaminants in 1,234 individual packets of peat–based inoculants from 13 different inoculant groups that were either freshly manufactured or had been stored at 4 °C for up to 38 months to determine (a) rates of decline of rhizobial populations, and (b) effects of presence of contaminants on rhizobial populations. We also assessed effects of inoculant age on survival of the rhizobia during and immediately after inoculation of polyethylene beads.

Results

Rhizobial populations in the peat inoculants at manufacture and decline rates varied substantially amongst the 13 inoculant groups. The most stable were Sinorhizobium, Bradyrhizobium and Mesorhizobium with Rhizobium, particularly R. leguminosarum bv. trifolii the least stable. The presence of contaminants at the 10?6 level of dilution, i.e. >log 6.7 g?1 peat, reduced rhizobial numbers in the stored inoculants by an average of 37 %. Survival on beads following inoculation improved 2–3 fold with increasing age of inoculant.

Conclusions

We concluded that the Australian standards for peat-based rhizobial inoculants should be reassessed to account for the large differences amongst the groups in counts at manufacture and survival rates during storage. Key recommendations are to increase expiry counts from log 8.0 to log 8.7 rhizobia g?1 peat and to have four levels of inoculant shelf life ranging from 12 months to 3 years.  相似文献   

18.
To improve the nitrogen fixation, legume crops are often inoculated with selected effective rhizobia. However, there is large variation in how well the inoculant strains compete with the indigenous microflora in soil. To assess the success of the inoculant, it is necessary to distinguish it from other, closely related strains. Methods used until now have generally been based either on fingerprinting methods or on the use of reporter genes. Nevertheless, these methods have their shortcomings, either because they do not provide sufficiently specific information on the identity of the inoculant strain, or because they use genetically modified organisms that need prior authorization to be applied in the field or other uncontained environments. Another possibility is to target a gene that is naturally present in the bacterial genomes. Here we have developed a method that is based on amplicon sequencing of the bacterial housekeeping gene rpoB, encoding the beta-subunit of the RNA polymerase, which has been proposed as an alternative to the 16S rRNA gene to study the diversity of rhizobial populations in soils. We evaluated the method under laboratory and field conditions. Peanut seeds were inoculated with various Bradyrhizobium strains. After nodule development, DNA was extracted from selected nodules and the nodulating rhizobia were analysed by amplicon sequencing of the rpoB gene. The analyses of the sequence data showed that the method reliably identified bradyrhizobial strains in nodules, at least at the species level, and could be used to assess the competitiveness of the inoculant compared to other bradyrhizobia.  相似文献   

19.
The mutualism between legumes and nitrogen-fixing soil bacteria (rhizobia) is a key feature of many ecological and agricultural systems, yet little is known about how this relationship affects aboveground interactions between plants and herbivores. We investigated the effects of the rhizobia mutualism on the abundance of a specialized legume herbivore on soybean plants. In a field experiment, soybean aphid (Aphis glycines) abundances were measured on plants (Glycine max) that were either (1) treated with a commercial rhizobial inoculant, (2) associating solely with naturally occurring rhizobia, or (3) given nitrogen fertilizer. Plants associating with naturally occurring rhizobia strains exhibited lower aphid population densities compared to those inoculated with a commercial rhizobial preparation or given nitrogen fertilizer. Genetic analyses of rhizobia isolates cultured from field plants revealed that the commercial rhizobia strains were phylogenetically distinct from naturally occurring strains. Plant size, leaf nitrogen concentration, and nodulation density were similar among rhizobia-associated treatments and did not explain the observed differences in aphid abundance. Our results demonstrate that plant–rhizobia interactions influence plant resistance to insect herbivores and that some rhizobia strains confer greater resistance to their mutualist partners than do others.  相似文献   

20.
Previously, we found that genetically diverse rhizobia nodulating Lotus corniculatus at a field site devoid of naturalized rhizobia had symbiotic DNA regions identical to those of ICMP3153, the inoculant strain used at the site (J. T. Sullivan, H. N. Patrick, W. L. Lowther, D. B. Scott, and C. W. Ronson, Proc. Natl. Acad. Sci. USA 92:8985-8989, 1995). In this study, we characterized seven nonsymbiotic rhizobial isolates from the rhizosphere of L. corniculatus. These included two from plants at the field site sampled by Sullivan et al. and five from plants at a new field plot adjacent to that site. The isolates did not nodulate Lotus species or hybridize to symbiotic gene probes but did hybridize to genomic DNA probes from Rhizobium loti. Their genetic relationships with symbiotic isolates obtained from the same sites, with inoculant strain ICMP3153, and with R. loti NZP2213T were determined by three methods. Genetic distance estimates based on genomic DNA-DNA hybridization and multilocus enzyme electrophoresis were correlated but were not consistently reflected by 16S rRNA nucleotide sequence divergence. The nonsymbiotic isolates represented four genomic species that were related to R. loti; the diverse symbiotic isolates from the site belonged to one of these species. The inoculant strain ICMP3153 belonged to a fifth genomic species that was more closely related to Rhizobium huakuii. These results support the proposal that nonsymbiotic rhizobia persist in soils in the absence of legumes and acquire symbiotic genes from inoculant strains upon introduction of host legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号