首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed to examine the influence of interneuronal interactions on the expression of neurotransmitter receptors by developing mammalian CNS neurons. Receptors for the neuropeptide, substance P (SP), were assayed on embryonic rat motoneurons and other spinal cord neurons developing in vitro by the binding of 125I-SP to live neurons. Scatchard analysis showed the presence of high-affinity binding sites, and binding competition assays using SP, neurokinin A, or neurokinin B indicated that the high-affinity 125I-SP binding sites on these neurons were type NK1 tachykinin receptors, or SP receptors (SPRs). Neurons in the spinal cords of rats at Embryonic Day 14 displayed no SPRs. Cell-surface SPRs were detected on spinal cord neurons within 24 hr after they were placed in culture, however, and the level of 125I-SP binding increased for several days. SPRs were assayed on spinal motoneurons that had been identified by retrograde labeling with a fluorescent tracer, isolated in high purity by fluorescence-activated cell sorting (FACS), and maintained in culture. Motoneurons grown in isolation from other neurons developed SPRs in vitro along the same time course as neurons in heterogeneous spinal cord cultures. These results show that rat spinal motoneurons can express SPRs early in their development, and they suggest that the initial expression of SPRs by developing motoneurons does not require interaction with other neurons.  相似文献   

2.
Induction of Cholinergic Expression in Developing Spinal Cord Cultures   总被引:2,自引:2,他引:0  
The induction of choline acetyltransferase (ChAT) by cAMP derivatives was studied in dissociated spinal cord cultures. Dibutyryl cAMP (dbcAMP) and 8-bromo cAMP (1 mM) produced a 2-3-fold stimulation of ChAT activity in developing cultures whereas 8-bromo cGMP had no effect. A phosphodiesterase inhibitor, 3-isobutyl-l-methylxanthine, also increased (2-fold) ChAT activity in immature cultures. Significant elevations in ChAT were detected after 2 h incubation with dbcAMP. Maximum enzyme induction was observed 24 h after dbcAMP supplementation to the culture medium. Developmental studies revealed that ChAT could be induced on days 2-16 in culture. The largest induction of ChAT activity was observed on day 7 in culture. After day 19, when control enzyme activity attained levels of mature cultures, cAMP-mediated ChAT induction was no longer observed. Cycloheximide and actinomycin D blocked ChAT induction whereas basal enzyme activity remained unaffected. Culture protein content was not changed after 1-day exposure to dbcAMP. 125I-Tetanus toxin fixation after dbcAMP treatment revealed a 20% decrease from control in neuronal surface during days 7-9 in culture. These data indicated that cAMP derivatives produced a rapid increase in cholinergic expression during a specific period of development in spinal cord cultures. There appears to be specificity to this effect, as total neuronal surface does not respond in the same manner as ChAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC.  相似文献   

5.
Serotonergic neurons located at the base of the mammalian brain innervate practically every region of the brain and the spinal cord. These neurons exhibit spontaneous electrical discharges in a rhythmical way. Their firing frequency is modulated by serotonin autoreceptors which also regulate intracellular cAMP levels. We have investigated how elevated levels of cAMP alter the development and the functional properties of serotonergic neurons in culture. To study the influence of cAMP on the expression of genes underlying serotonergic activity, a quantitative RT-PCR approach using internal standards was developed. Cultures of embryonic rat brain serotonergic neurons were continuously treated with cAMP analogues. Increased cAMP levels had three effects. First, the neuronal morphology was changed towards that typical for mature serotonergic neurons. Second, the expression of tryptophan hydroxylase, the rate-limiting enzyme in serotonin production, was increased in dibutyryl-cAMP treated cultures. Third, the expression of the inhibitory autoreceptor (5-HT1A) was down-regulated. These results suggest the existence of a mechanism by which the neurons react to synaptic input regulating intracellular cAMP levels. Increased cAMP concentrations affect the development and cause a prolonged activation of serotonergic transmission. Since 5-HT1A receptors inhibit cAMP formation, their down-regulation argues against a negative feedback control in this system, consistent with observations in vivo.  相似文献   

6.
Substance P (SP) and its receptor, the neurokinin 1 receptor (NK1R), play important roles in transmitting and regulating somatosensory nociceptive information. However, their roles in visceral nociceptive transmission and regulation remain to be elucidated. In the previous study, moderate SP immunoreactive (SP-ir) terminals and NK1R-ir neurons were observed in the dorsal commissural nucleus (DCN) of the lumbosacral spinal cord. Thus we hypothesized that the SP-NK1R system is involved in visceral pain transmission and control within the DCN. The acute visceral pain behaviors, the colon histological changes and the temporal and spatial changes of NK1R-ir structures and Fos expression in the neurons of the DCN were observed in rats following lower colon instillation with 5% formalin. The formalin instillation induced significant acute colitis as revealed by the histological changes in the colon. NK1R internalization in the DCN was obvious at 8 min. It reached a peak (75.3%) at 30 min, began to decrease at 90 min (58.1%) and finally reached the minimum (19.7%) at 3 h after instillation. Meanwhile, formalin instillation induced a biphasic visceral pain response as well as a strong expression of Fos protein in the nuclei of neurons in the DCN. Finally, intrathecal treatment with the NK1R antagonist L732138 attenuated the NK1R internalization, Fos expression and visceral nociceptive responses. The present results suggest that the visceral nociceptive information arising from inflamed pelvic organs, such as the lower colon, might be mediated by the NK1R-ir neurons in the DCN of the lumbosacral spinal cord.  相似文献   

7.
Wang DS  Xu TL  Li JS 《生理学报》1999,51(4):361-370
采用制霉菌素穿孔膜片箍技术,研究了P物质对急性分离的大鼠骶髓后的核神经元士的宁敏感性甘氨酸反应的调控作用。在箍制电压为-40mV时,SP时1mmol/L-1μmol/L之间呈浓度依赖性地增强30μmol/L甘氨酸激活的氯电流。SP既不改变IGly的翻转电位,也不是影响Gly与其受体的亲和力。Spantide和选择性N中受体拮抗剂,L-668,169,可阻断SP的增强作用,而选择性NK2受体拮抗剂,  相似文献   

8.
The aim of the study was to test whether the synthesis of substance P (SP) and that of its receptor (also known as NK1 receptor) are coordinately regulated after chronic pharmacologic intervention in two neural systems, the spinal cord and basal ganglia. In one set of experiments, capsaicin was administered subcutaneously during the early postnatal period (day 3 after birth) to induce degeneration of afferent sensory neurons in the spinal cord. In the other set of experiments, interruption of dopaminergic transmission was achieved by two methods: (a) The neurotoxin 6-hydroxydopamine was used to denervate dopaminergic neurons during the early postnatal period, and (b) haloperidol was used in adult animals to block dopaminergic transmission by receptor blockade. The spinal cord, striatum, or both were used for the quantification of tachykinin [SP and neurokinin A (NKA)] and opioid peptides [[Met5]-enkephalin (ME) and dynorphin A (1-8) (DYN)] by radioimmunoassays. The abundance of total SP-encoding preprotachykinin (PPT) mRNA and SP receptor (SPR) mRNA in spinal cord (C5 to T1 segments), striatum, or microdissected substantia nigra was determined by northern blot or solution hybridization analysis. Amines and their acid metabolites were quantified by HPLC. Capsaicin administration (subcutaneously) during the early postnatal period increased latency in a hot-plate test, decreased SP and NKA levels, increased levels of PPT mRNAs, and did not affect SPR mRNA levels in the spinal cord. Intraspinal SP systems may attempt to compensate for the loss of afferent SP input, whereas spinal cord receptor mRNA levels do not appear to be altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Galanin (GAL) inhibits midbrain dopamine (DA) activity in several experimental paradigms, yet the mechanism underlying this inhibition is unclear. We examined the effects of GAL on the expression of tyrosine hydroxylase (TH) in primary cultures of rat embryonic (E14) ventral mesencephalon (VM). One micromolar GAL had no effect on the number of TH-immunoreactive (ir) neurons in VM cultures. However, 1 micro m GAL reduced an approximately 100% increase in TH-ir neurons in 1 mm dibutyryl cAMP (dbcAMP)-treated cultures by approximately 50%. TH-ir neuron number in dbcAMP-treated VM cultures was dose-responsive to GAL and the GAL receptor antagonist M40 blocked GAL effects. Semi-quantitative RT-PCR and quantitative immunoblotting experiments revealed that GAL had no effect on TH mRNA levels in VM cultures but reduced TH protein. VM cultures expressed GALR1, GALR2, and GALR3 receptor mRNA. However, dbcAMP treatment resulted in a specific approximately 200% increase in GALR1 mRNA. GALR1 activity is linked to a pertussis toxin (PTX)-sensitive opening of G protein-gated K+ channels (GIRKs). GAL reduction of TH-ir neuron number in dbcAMP + GAL-treated cultures was sensitive to both PTX and tertiapin, a GIRK inhibitor. GAL inhibition of midbrain DA activity may involve a GALR1- mediated reduction of TH in midbrain dopaminergic neurons.  相似文献   

10.
The specific binding of 125I-Bolton Hunter substance P (125I-BHSP) was estimated on 4- to 5-week-old primary cultures of astrocytes from several brain structures and the spinal cord of 16-day-old embryonic or newborn rats. In both cases, high levels of binding of 125I-BHSP were found on intact astrocytes from the brainstem, but this binding was low or negligible on cells from the cerebral cortex, striatum, hypothalamus, and mesencephalon. In addition, hippocampal astrocytes from newborn rats were also devoid of 125I-BHSP binding sites, while a binding of 125I-BHSP (half that of brainstem cells) was observed on astrocytes from the cerebellum and spinal cord. It was also shown that this regional heterogeneity in 125I-BHSP binding was not linked to differences in the inactivation of the ligand, cell plating density. or eventual cell contaminants. Five-day-old cultures from 16-day-old embryos were used to estimate 125I-BHSP binding on neuron-enriched cultures. Specific 125I-BHSP binding was found on cells from the brainstem, mesencephalon, and hypothalamus, but neurons from the cerebral cortex or the striatum contained low or negligible amounts of 125I-BHSP binding sites. Competition studies using tachykinins and SP analogues indicated that 125I-BHSP binding sites on brainstem astrocytes (16-day-old embryos) have the pharmacological profile expected for NK1 binding sites. SP (1 microM) stimulated phosphoinositide breakdown in cells rich in 125I-BHSP binding sites (brainstem) but not in those devoid of 125I-BHSP binding (striatum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Dibutyryl cyclic AMP (dbcAMP), a permeant analogue of cyclic AMP (cAMP), prevented, for at least 3 weeks, the death of tyrosine hydroxylase (TH)-immunopositive dopaminergic neurons, which occurred spontaneously by apoptosis in mesencephalic cultures. Treatment with the cyclic nucleotide analogue also led to a significant increase in the uptake of [3H]dopamine, attesting that the rescued TH+ neurons were fully functional and differentiated. dbcAMP was most effective when added immediately after plating, but delayed treatment could still arrest the ongoing degenerative process. Trophic/survival effects were long-lasting, declining only progressively after withdrawal of dbcAMP from the culture medium. They were independent of cell density and still detectable in the absence of serum proteins. The effects of dbcAMP were mimicked by depolarizing concentrations of potassium and by agents that increase endogenous production of cAMP, such as forskolin or 3-isobutyl-1-methylxanthine, but not by native cAMP, which cannot cross cell membranes. Elimination of glial cells by arabinoside-C did not reduce the activity of dbcAMP. GABAergic neurons, also present in these cultures, were much less dependent on the cyclic nucleotide analogue for their survival, and serotoninergic cells were not dependent at all. Therefore, cAMP-dependent signaling may be particularly crucial for the maturation and long-term survival of mesencephalic dopaminergic neurons.  相似文献   

12.
13.
14.
Immunoreactivity for NK1 receptors is confined to specific nerve cell bodies in the guinea-pig ileum, including inhibitory motor neurons and secretomotor neurons. In the present work, endocytosis of NK1 receptors in these enteric neurons was studied following addition of substance P (SP) to isolated ileum. NK1 receptors were localised with antibodies against the C-terminus of this receptor. Some preparations were incubated with SP tagged with the fluorescent label, Cy3.18, so that the fate of SP bound to receptors could be followed. Preparations were analysed by confocal microcopy. In tissue that was incubated at 4° C in the absence of SP, most NK1 receptor immunoreactivity (IR) was confined to surface membranes of nerve cells. At 37° C in the presence of 10−7 M SP (plus 3×10−7M tetrodotoxin to prevent indirect activation via other neurons) the neuronal NK1 receptor was rapidly internalised. After 5 min, NK1 receptor IR was partially internalised, at 20 min NK1 receptor IR was throughout the cytoplasm and in perinuclear aggregates and at 30 min it was again at the cell surface. SP-induced NK1 receptor endocytosis was inhibited by the specific NK1 receptor antagonist, SR140333. Cy3-SP was colocalised with NK1 receptor IR and was internalised with the NK1 receptor. These results show that enteric neurons exhibit authentic NK1 receptors that are rapidly internalised when exposed to their preferred ligand.  相似文献   

15.
Regulation of cholinergic expression in cultured spinal cord neurons   总被引:1,自引:0,他引:1  
Factors regulating development of cholinergic spinal neurons were examined in cultures of dissociated embryonic rat spinal cord. Levels of choline acetyltransferase (CAT) activity in freshly dissociated cells decreased rapidly, remained low for the first week in culture, and then increased. The decrease in enzyme activity was partially prevented by increased cell density or by treatment with spinal cord membranes. CAT activity was also stimulated by treatment with MANS, a molecule solubilized from spinal cord membranes. The effects of MANS were greatest in low-density cultures and in freshly plated cells, suggesting that the molecule may substitute for the effects of elevated density and cell-cell contact. CAT activity in ventral (motor neuron-enriched) spinal cord cultures was similarly regulated by elevated density or treatment with MANS, whereas enzyme activity was largely unchanged in mediodorsal (autonomic neuron-enriched) cultures under these conditions. These observations suggest that development of cholinergic motor neurons and autonomic neurons are not regulated by the same factors. Treatment of ventral spinal cord cultures with MANS did not increase the number of cholinergic neurons detected by immunocytochemistry with a monoclonal CAT antibody, suggesting that MANS did not increase motor neuron survival but rather stimulated levels of CAT activity per neuron. These observations indicate that development of motor neurons can be regulated by cell-cell contact and that the MANS factor may mediate the stimulatory effects of cell-cell contact on cholinergic expression.  相似文献   

16.
17.
The Niemann Pick-C1 (NPC-1) protein is essential for intracellular transport of cholesterol derived from low-density lipoprotein import in mammalian cells. The role of the protein kinase A (PKA) pathway in regulation of expression of the NPC-1 gene was investigated. NPC-1 promoter activity was induced by treatment with dibutryl cAMP (dbcAMP), alone or in combination with the cAMP response element (CRE) binding protein (CREB) overexpressed in adrenal Y-1 cells. When the catalytic subunit of PKA was overexpressed in Y-1 cells, there were similar increases in NPC-1 promoter activity in the presence of CREB. Responses were attenuated by blockade of the PKA pathway, and in the Kin-8 cell line deficient in PKA. Promoter deletion analysis revealed that this response was present in promoter fragments of 186 bp and larger but not present in the 121-bp fragment. Two promoter regions, one at -430 and one at -120 upstream of the translation initiation site, contained CRE consensus sequences. These bound recombinant CREB in EMSA, confirming their authenticity as CREB response elements. Promoters bearing mutations of both CRE displayed no response to dbcAMP. The orphan nuclear receptor, steroidogenic factor-1 (SF-1), was implicated in NPC-1 transactivation by the presence of SF-1 target sequence that formed a complex with recombinant SF-1 in EMSA. Furthermore, transfection of a plasmid that overexpressed SF-1 into ovarian granulosa cells increased promoter activity in response to dbcAMP, an effect abrogated by mutation of the SF-1 target sequence. Chromatin immunoprecipitation assays demonstrated that the CRE region of the endogenous and transfected NPC-1 promoter associated with both acetylated and phosphorylated histone H-3 and that this association was increased by dbcAMP treatment. Treatment with dbcAMP also increased the association of the CRE region of the promoter with CREB binding protein, which has histone acetyltransferase activity. Together, these results demonstrate a mechanism of regulation of NPC-1 expression by the cAMP-PKA pathway that includes PKA phosphorylation of CREB, recruitment of the coactivator CREB binding protein and the phosphorylation and acetylation of histone H-3 to transactivate the NPC-1 promoter.  相似文献   

18.
Although raising intracellular cyclic adenosine monophosphate (cAMP) levels is generally considered to be inhibitory on the mitogen-induced T cell proliferation, in this study we have shown that the addition of either dbcAMP (50 microM) or cholera toxin (1 ng/ml) resulted in an increase in [3H]thymidine uptake in PBMC cultures stimulated with phorbol ester, 12-tetradecanoylphorbol 13-acetate (TPA), or with a combination of TPA plus anti-CD3 mAb (mAb 235). In contrast, under similar culture conditions, the phytohemagglutinin-P (PHA-P) response was inhibited by these agents as has been reported. The augmentative effect of dbcAMP in PBMC cultures was due to an increase in IL-2 production and not to increased in IL-2R-alpha chain expression. The enhancing effect of dbcAMP and CT observed with PBMC was monocyte dependent and not seen with purified T cell preparations. The addition of monocytes reconstituted the ability of intracellular cAMP elevating agents to augment the T cell response to TPA with and without mAb to CD3. The monocytes mediate their action via soluble factor(s) with molecular weight (m.w.) of more than 10 kDa. Neither rIL-1, rIL-6, nor rTNF-alpha have any augmentative effect as contrast with the supernatant from treated monocytes. Taken together, our results indicate that cAMP can play a positive regulatory role in T cell proliferation due to factor(s) secreted by dbcAMP-treated monocytes resulting in increased IL-2 synthesis in T cells.  相似文献   

19.
The role of neurokinin 1 (NK(1)) receptor and possible interaction between NK(1) and N-methyl-D-aspartic acid (NMDA) glutamatergic receptors were investigated on spinal c-fos expression after lower urinary tract irritation with acetic acid infusion in rats. At both levels of the first (L(1)) and sixth lumbar (L(6)) spinal cord, where most of hypogastric nerve and pelvic nerve afferent terminals project, respectively, the selective NK(1) receptor antagonist CP-99,994 dose dependently reduced the total number of c-fos protein (Fos)-positive cells. However, CP-100,263, the enantiomer of CP-99,994 with a very low affinity for NK(1) receptor, did not have any effect on the total number of Fos-positive cells. Coadministration of a low dose (1 mg/kg) of CP-99,994 and NMDA receptor antagonist (MK-801), either of which alone did not affect c-fos expression, significantly inhibited c-fos expression at both levels of the spinal cord. Regarding regional differences, the number of Fos-positive cells decreased significantly at all regions of the L(6) level, but only at the dorsal horn of the L(1) level. These results indicate that NK(1) receptor is involved in spinal c-fos expression after lower urinary tract irritation and that NK(1) and NMDA receptors have a synergistic interaction in the spinal processing of nociceptive input from the lower urinary tract.  相似文献   

20.
The effect of immobilization stress (IM-stress) on the concentration and the receptor binding of substance P (SP), methionine-enkephalin (ME) and thyrotropin-releasing hormone (TRH) was determined in eight brain regions and the spinal cord. The concentration of SP was decreased in the septum, striatum and hippocampus, and SP receptor binding was decreased in the septum, amygdala + pyriform cortex and hypothalamus. Scatchard analysis indicated that the decrease in the SP binding is mainly due to the decrease in the number of receptors. The concentration of ME was not changed, but ME receptor binding was decreased in the septum. The concentration of TRH was decreased in the frontal cortex, septum, amygdala + pyriform cortex and pons + medulla oblongata, but increased in the spinal cord. TRH receptor binding was decreased in the septum, amygdala + pyriform cortex and hypothalamus. Scatchard analysis indicated that the decrease in TRH binding is due to the decrease in the number of receptors. These results show that IM-stress affects the neuropeptide receptor as well as neuropeptide concentration, and that the septum is a very important region under IM-stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号