首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breast tumors in women can adapt to endocrine deprivation therapy by developing hypersensitivity to estradiol. For this reason, aromatase inhibitors can be effective in women relapsing after treatment with tamoxifen or following oophorectomy. To understand the mechanisms responsible, we examined estrogenic stimulation of cell proliferation in a model system and provided in vitro and in vivo evidence that long-term estradiol deprivation (LTED) causes “adaptive hypersensitivity”. The primary mechanisms responsible involve up-regulation of ER as well as the MAP kinase, PI-3 kinase, and mTOR growth factor pathways. ER is 4–10-fold up-regulated and co-opts a classical growth factor pathway using Shc, Grb2, and Sos. This induces rapid non-genomic effects which are enhanced in LTED cells. Estradiol binds to cell membrane associated ER, physically associates with the adaptor protein Shc, and induces its phosphorylation. In turn, Shc binds Grb2 and Sos which result in the rapid activation of MAP kinase. These non-genomic effects of estradiol produce biologic effects as evidenced by Elk activation and by morphologic changes in cell membranes. Additional effects include activation of PI-3 kinase and mTOR pathways through estradiol induced binding of ER to the IGF-1 and EGF receptors. Further proof of the non-genomic effects of estradiol involved use of “designer” cells which selectively express ER in nucleus, cytosol, and cell membrane. We have used a new downstream inhibitor of these pathways, farnesyl-thio-salicylic acid (FTS), to block proliferation in hypersensitive cells as a model for a potentially effective strategy for treatment of patients.  相似文献   

2.
Long-term estrogen deprivation causes hypersensitivity of MCF-7 cells to the mitogenic effect of estradiol (E2) which is associated with activation of mitogen-activated protein kinase (MAPK). However, several lines of evidence indicate that MAPK activation is not the exclusive mechanism for E2 hypersensitivity and multiple signal pathways might be involved. The current study explores the possible role of the PI3 kinase (PI3K) pathway in development of E2 hypersensitivity. Basal PI3K activity in long-term estrogen deprived MCF-7 cells (LTED) was elevated as evidenced by increased phosphorylation of three downstream effectors, Akt, p70 S6 kinase, and eukaryotic initiation factor-4E binding protein (4E-BP1), which was blocked by the specific inhibitor of PI3K, LY294002. Dual blockade of both MAPK and PI3K completely reversed E2 hypersensitivity of LTED cells. Enhancement in aromatase activity is another phenomenon accompanied with E2 hypersensitivity. In aromatase over-expressing MCF-7 cells, aromatase activity was reduced by inhibitors of MAPK and PI3K suggesting the involvement of protein phosphorylation in the regulation of aromatase activity. Our data suggest that in addition to the MAP kinase pathway, activation of the PI3 kinase pathway is involved in E2 hypersensitivity, which develops during adaptation of MCF-7 cells to the low estrogen environment.  相似文献   

3.
Estradiol could protect osteoblast against apoptosis, and apoptosis and autophagy were extensively and intimately connected. The aim of the present study was to test the hypothesis that autophagy was present in osteoblasts under serum deprivation and estrogen protected against osteoblast apoptosis via promotion of autophagy. MC3T3-E1 osteoblastic cells were cultured in a serum-free and phenol red-free minimal essential medium (α-MEM). Ultrastructural analysis, lysosomal activity assessment and monodansycadaverine (MDC) staining were employed to determine the presence of autophagy, and real time PCR was used to evaluate the expression of autophagic markers. Meanwhile, the osteoblasts were transferred in a serum-free and phenol red-free α-MEM containing either vehicle or estradiol. Apoptosis and autophagy was assessed by using the techniques of real-time PCR, Western blot, immunofluorescence assay, and flow cytometry. The possible pathway through which estrogen promoted autophagy in the serum-deprived osteoblasts was also investigated. Real-time PCR demonstrated the expression of LC3, beclin1 and ULK1 genes in osteoblasts under serum deprivation, and immunofluorescence assay verified high expression of proteins of these three autophagic bio-markers. Lysosomes and autolysosomes accumulated in the cytoplasm of osteoblasts were also detected under transmission electron microscopy, MDC staining and lysosomal activity assessment. Meanwhile, estradiol significantly decreased the expression of proteins of the bio-markers of apoptosis, and at the same time increased the expression of proteins of the bio-markers of autophagy in the serum-deprived osteoblasts. Furthermore, the estradiol-promoted autophagy in serum-deprived osteoblasts could be blocked by estrogen receptor (ER) antagonist (ICI 182780), and estradiol failed to rescue the cells pretreated with an inhibitor of vacuolar ATPase (bafilomycin A) from apoptosis. Serum deprivation resulted in apoptosis through activation of Caspase-3 and induced autophagy through inhibition of phospho-mammalian target of rapamycin (p-mTOR). Both 3-methyladenine (3MA) and U0126 led to increase of apoptosis in osteoblasts with serum deprivation. Estradiol failed to over-ride the inhibitory effect of 3MA on phosphorylation of AKT but directly led to dephosphorylation of mTOR and upregulation of LC3 protein expression. However, the estradiol-enhanced LC3 protein expression was significantly suppressed by U0126 through inhibition of phosphorylation of extracellular signal-regulated kinase (ERK). Estradiol rescued osteoblast apoptosis via promotion of autophagy through the ER–ERK–mTOR pathway.  相似文献   

4.
Cellular response to estrogen is mediated both by estrogen receptor (ER) binding to estrogen response element (ERE) and by non-nuclear actions like activation of signal transducing pathways. The main aims are to study if PI3K/Akt signaling pathway can be activated by 17beta-estradiol (E2) via non-nuclear action and to investigate the relationship of the action of E2 and ER in endometrial cancer cells expressing with different status of ER. The levels of phosphorylated Akt (Ser473) (P-Akt) and total Akt were examined by western blot and Akt kinase activity was measured in cells after stimulation with 1 microM E2 at different time points. Inhibitory role of LY294002 on activation of Akt induced by E2 and its estrogen antagonist, ICI182780 were also tested. P-Akt/Akt was used as a measure of activation of Akt. We found that maximum P-Akt/Akt and Akt kinase activity took place at 30 min in Ishikawa cells and 15 min in HEC-1A cells and the activation persisted for at least 2 h after stimulation with 1 microM E2. The activation of Akt elicited gradually with increasing doses of E2. PI3K inhibitor, LY294002, stopped the activating Akt in a dose-dependent manner and 50 microM LY294002 completely blocked the activation of Akt induced by E2. ICI182780 could block the activation of PI3K/Akt in ER-positive Ishikawa cells but not in HEC-1A cells with poor-expressed ER. This study demonstrated that E2 is able to promptly activate PI3K/Akt signal pathway in Ishikawa cells in an ER-dependent manner and ER-independent in HEC-1A cells. Blockage of PI3K/Akt cascade may become a potential and effective way to control endometrial carcinoma, especially in ER-negative cancers, which show no response to endocrinal therapy.  相似文献   

5.
6.
Our previous studies have demonstrated that ginsenoside Rg1 is a novel class of potent phytoestrogen and can mimic the action of estradiol in stimulation of MCF-7 cell growth by the crosstalk between insulin-like growth factor-I receptor (IGF-IR)-dependent pathway and estrogen receptor (ER)-dependent pathway. The present study was designed to investigate the neuroprotective effects of ginsenoside Rg1 against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human neuroblastoma SK-N-SH cells and the possible mechanisms. Pre-treatment with ginsenoside Rg1 resulted in an enhancement of survival, and significant rescue occurred at the concentration of 0.01 μM on cell viability against 6-OHDA-induced neurotoxicity. These effects could be completely blocked by IGF-IR antagonist JB-1 or ER antagonist ICI 182780. 6-OHDA arrested the cells at G0G1 phase and prevented S phase entry. Rg1 pre-treatment could reverse the cytostatic effect of 6-OHDA. Ginsenoside Rg1 also could attenuate 6-OHDA-induced decrease in mitochondrial membrane potential. These effects could also be completely blocked by JB-1 or ICI 182780. Furthermore, 6-OHDA-induced up-regulation of Bax and down-regulation of Bcl-2 mRNA and protein expression could be restored by Rg1 pre-treatment. Rg1 pre-treatment could reverse the down-regulation of ERα protein expression induced by 6-OHDA treatment. Cells transfected with the estrogen responsive element (ERE)-luciferase reporter construct exhibited significantly increased ERE-luciferase activity in the Rg1 presence, suggesting that the estrogenic effects of Rg1 were mediated through the endogenous ERs. These results suggest that ginsenoside Rg1 may attenuate 6-OHDA-induced apoptosis and its action might involve the activation of IGF-IR signaling pathway and ER signaling pathway.  相似文献   

7.
The growth dependence of many breast cancers on oestrogen has been exploited therapeutically by oestrogen deprivation, but almost all patients eventually develop resistance largely by unknown mechanisms. Wild-type (WT) MCF-7 cells were cultured in oestrogen-deficient medium for 90 weeks in order to establish a long-term oestrogen-deprived MCF-7 (LTED) which eventually became independent of exogenous oestrogen for growth. After 15 weeks of quiescence (LTED-Q), basal growth rate increased in parallel with increasing oestrogen sensitivity. While 10−9 M oestradiol (E2) maximally stimulated WT growth, the hypersensitive LTED (LTED-H) were maximally growth stimulated by 10−13 M E2. By week 50, hypersensitivity was apparently lost and the cells became oestrogen independent (LTED-I), although the pure antioestrogen ICI182780 still inhibited cell growth and reversed the inhibitory effect of 10−9 M E2 at 10−12 to 10−7 M. Tamoxifen (10−7 to 10−6 M) had a partial agonist effect on WT, but had no stimulatory effect on LTED. Whilst LTED cells have a low progesterone receptor (PgR) expression in all phases, oestrogen receptor (ER) a expression was, on average, elevated five- and seven-fold in LTED-H and LTED-I, respectively, and serine118 was phosphorylated. ERβ expression was up-regulated and the levels of insulin receptor substrate 1 (IRS-1) remained low throughout all phases. The levels of RIP140 mRNA appeared to decrease to approximately 50% of the WT message in LTED-Q and remained constant into the hypersensitive phase. No significant changes were observed in the expression of SUG-1, TIF-1 and SMRT in LTED. The overall changes in nuclear receptor interacting proteins do not appear to be involved in the hypersensitivity. Thus, the resistance of these human breast cancer cells to oestrogen-deprivation appears to be due to acquired hypersensitivity which may be explained in part by increased levels of and phosphorylated ER.  相似文献   

8.
Ma X  Xie KP  Shang F  Huo HN  Wang LM  Xie MJ 《生理学报》2012,64(2):207-212
The aim of the present study was to investigate the involvements of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. MCF-7 cells (human breast adenocarcinoma cell line) were subjected to several drugs, including IGF-1, wogonin and ER inhibitor ICI182780, alone or in combination. MTT assay was used to detect breast cancer proliferation. Western blot was used to analyze ERα and p-Akt expression levels. CAM models prepared from 6-day chicken eggs were employed to evaluate angiogenesis inhibition. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis. These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model.  相似文献   

9.
SH2 domain proteins are important components of the signal transduction pathways activated by growth factor receptor tyrosine kinases. We have been cloning SH2 domain proteins by bacterial expression cloning using the tyrosine phosphorylated C-terminus of the epidermal growth factor receptor as a probe. One of these newly cloned SH2 domain proteins, GRB-7, was mapped on mouse chromosome 11 to a region which also contains the tyrosine kinase receptor, HER2/erbB-2. The analogous chromosomal locus in man is often amplified in human breast cancer leading to overexpression of HER2. We find that GRB-7 is amplified in concert with HER2 in several breast cancer cell lines and that GRB-7 is overexpressed in both cell lines and breast tumors. GRB-7, through its SH2 domain, binds tightly to HER2 such that a large fraction of the tyrosine phosphorylated HER2 in SKBR-3 cells is bound to GRB-7. GRB-7 can also bind tyrosine phosphorylated SHC, albeit at a lower affinity than GRB2 binds SHC. We also find that GRB-7 has a strong similarity over > 300 amino acids to a newly identified gene in Caenorhabditis elegans. This region of similarity, which lies outside the SH2 domain, also contains a pleckstrin homology domain. The presence of evolutionarily conserved domains indicates that GRB-7 is likely to perform a basic signaling function. The fact that GRB-7 and HER2 are both overexpressed and bound tightly together suggests that this basic signaling pathway is greatly amplified in certain breast cancers.  相似文献   

10.
Glucocorticoids exert potent anti-inflammatory effects by repressing proinflammatory genes. We previously demonstrated that estrogens repress numerous proinflammatory genes in U2OS cells. The objective of this study was to determine if cross talk occurs between the glucocorticoid receptor (GR) and estrogen receptor (ER)α. The effects of dexamethasone (Dex) and estradiol on 23 proinflammatory genes were examined in human U2OS cells stably transfected with ERα or GR. Three classes of genes were regulated by ERα and/or GR. Thirteen genes were repressed by both estradiol and Dex (ER/GR-repressed genes). Five genes were repressed by ER (ER-only repressed genes), and another five genes were repressed by GR (GR-only repressed genes). To examine if cross talk occurs between ER and GR at ER/GR-repressed genes, U2OS-GR cells were infected with an adenovirus that expresses ERα. The ER antagonist, ICI 182780 (ICI), blocked Dex repression of ER/GR-repressed genes. ICI did not have any effect on the GR-only repressed genes or genes activated by Dex. These results demonstrate that ICI acts on subset of proinflammatory genes in the presence of ERα but not on GR-activated genes. ICI recruited ERα to the IL-8 promoter but did not prevent Dex recruitment of GR. ICI antagonized Dex repression of the TNF response element by blocking the recruitment of nuclear coactivator 2. These findings indicate that the ICI-ERα complex blocks Dex-mediated repression by interfering with nuclear coactivator 2 recruitment to GR. Our results suggest that it might be possible to exploit ER and GR cross talk for glucocorticoid therapies using drugs that interact with ERs.  相似文献   

11.
Icaritin has selective estrogen receptor (ER) modulating activity. ERs are expressed in the prostate stroma, and estrogens have an important role in the pathology of benign prostatic hyperplasia (BPH). However, the impact of icaritin on BPH was not studied. Human prostatic smooth muscle cells (PSMCs) were treated with 0–100 μM icaritin, also using 10 μM ICI182780 as a specific ER antagonist. The effects on cell growth and apoptosis were determined by cell counting and sandwich-enzyme-immunoassay. Western blotting was employed to illustrate the possible mechanisms. Cell growth was strongly inhibited by icaritin, and this was accompanied by an augmented apoptosis. Few changes in icaritin-induced growth inhibition and apoptosis were observed after pretreatment in the presence of ICI182780. Consistent with growth inhibition and apoptosis induction, icaritin decreased cyclin D1 and CDK4 expression and increased Bax/Bcl-2 ratio in human PSMCs. Furthermore, icaritin induced sustained phosphorylation of extracellular signal-regulated kinase (ERK) in human PSMCs. PD98059, a specific ERK inhibitor, blocked the activation of ERK by icaritin and abolished the icaritin-induced growth inhibition and apoptosis. The results indicate that icaritin reduces growth and induces apoptosis in human PSMCs via ERK signaling pathway without involvement of ERs.  相似文献   

12.
13.
Role of IRS-1-GRB-2 complexes in insulin signaling.   总被引:17,自引:13,他引:4       下载免费PDF全文
GRB-2 is a small SH2- and SH3 domain-containing adapter protein that associates with the mammalian SOS homolog to regulate p21ras during growth factor signaling. During insulin stimulation, GRB-2 binds to the phosphorylated Y895VNI motif of IRS-1. Substitution of Tyr-895 with phenylalanine (IRS-1F-895) prevented the IRS-1-GRB-2 association in vivo and in vitro. The myeloid progenitor cell line, 32-D, is insensitive to insulin because it contains few insulin receptors and no IRS-1. Coexpression of IRS-1 or IRS-1F-895 with the insulin receptor was required for insulin-stimulated mitogenesis in 32-D cells, while expression of the insulin receptor alone was sufficient to mediate insulin-stimulated tyrosine phosphorylation of Shc and activation of p21ras and mitogen-activated protein (MAP) kinase. The Shc-GRB-2 complex formed during insulin stimulation is a possible mediator of p21ras and MAP kinase activation in IRS-1-deficient 32-D cells. Interestingly, IRS-1, but not IRS-1F-895, enhanced the stimulation of MAP kinase by insulin in 32-D cells expressing insulin receptors. Thus, IRS-1 contributes to the stimulation of MAP kinase by insulin, probably through formation of the IRS-1-GRB-2 complex at Tyr-895. Our results suggest that the Shc-GRB-2 complex and the activation of p21ras-dependent signaling pathways, including MAP kinase, are insufficient for insulin-stimulated mitogenesis and that the essential function(s) of IRS-1 in proliferative signaling is largely unrelated to IRS-1-GRB-2 complex formation.  相似文献   

14.
Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2′-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the cells are still viable and potential treatments utilizing these pathways may contribute to drug resistant cells. These experiments demonstrate how the combined measurement of metabolic activity and DNA labeling provides a more reliable interpretation of cancer cell response to treatment regimens.  相似文献   

15.
The discovery that the hop constituent 8-prenylnaringenin (8PN) shows potent estrogenic activity, higher than that of the known phytoestrogens coumestrol, genistein and daidzein, has spurred an intense activity aimed at elucidating its biological profile and its dietary relevance connected with the consumption of beer. We have investigated if 8PN can induce signal transduction pathways via rapid estrogen receptor (ER) activation. Under conditions of estrogen-dependent growth, treatment of MCF-7 human breast cancer cells with 8PN induced a rapid and transient activation of the MAP kinase Erk-1 and Erk-2, with kinetics similar to those induced by 17beta-estradiol (E2). 8PN could trigger the MAP kinase pathway via dual c-Src kinase activation and association with ERalpha. Co-treatment with the ER antagonist ICI 182,780 blocked each step of this transduction pathway, confirming its ER dependence. However, and in striking contrast with E2, 8PN could not induce the PI3K/Akt pathway, resulting in altered kinetics and levels of cyclin D1 expression. In accordance with these observations, flow cytometric and biochemical analysis showed that 8PN inhibited cell cycle progression and induced apoptosis in MCF-7 cells. Interference with an ER associated PI3K pathway is proposed as a possible mechanism underlying the inhibition of survival and proliferation of estrogen responsive cells by 8PN. Taken together, our finding show that 8PN is an interesting new chemotype to explore the biology of ERs.  相似文献   

16.
The estrogen receptor (ER) pathway and the epidermal growth factor receptor (EGFR) pathway play pivotal roles in breast cancer progression. Targeted therapies able to intercept ER or signaling downstream to EGFR and its kin, HER2, are routinely used to treat distinct groups of breast cancer patients. However, patient responses are limited by resistance to endocrine therapy, which may be due to compensatory HER2/EGFR signaling. This raises the possibility that simultaneous interception of HER2 and ER may enhance therapeutic efficacy. To address the question, we treated breast cancer cells with both fulvestrant (ICI 182780), an ER antagonist with no agonist effects, and lapatinib, an orally available tyrosine kinase inhibitor specific to EGFR and HER2. Our results indicate that the combination of drugs is especially effective when applied to HER2-overexpressing, ER-positive cancer cells. Interestingly, fulvestrant activated the mitogen-activated protein kinase (MAPK) pathway of these cells, but complete inhibition of MAPK signaling was observed on cotreatment with lapatinib. Taken together, our observations reinforce the possibility that the effectiveness of combining anti-ER and anti-HER2/EGFR drugs may be especially effective on a relatively small subtype of HER2-overexpressing, ER-positive tumors of the breast.  相似文献   

17.
Estrogen-bound estrogen receptors (ER) alpha and beta classically activate gene expression after binding to the estrogen response element in the promoter regions of target genes. Estrogen also has rapid, nongenomic effects. It activates several membranous or cytoplasmic kinase cascades, including the phosphatidylinositol 3-phosphate (PI3K/Akt) cascade, a signaling pathway that plays a key role in cell survival and apoptosis. Normal human endometrium is exposed to variable levels of steroid hormones throughout the menstrual cycle. We hypothesized that Akt phosphorylation in human endometrium may vary with the menstrual cycle and in early pregnancy and that fluctuations in estrogen level may play a role in Akt activation in endometrial cells. We analyzed Akt phosphorylation using in vivo and in vitro techniques, including Western blot, immunohistochemistry, and immunocytochemistry. Estradiol significantly increased Akt phosphorylation in endometrial cells. Rapid stimulation of Akt activation in cultured stromal cells was observed. Akt phosphorylation by estradiol was inhibited by the PI3K inhibitor, wortmannin, but not by the ER antagonist, ICI 182 780. The maximal effect on Akt activity was observed following 5-15 min of estradiol treatment. Our results suggest that estradiol may directly affect PI3K-related signaling pathway by increasing the phosphorylation of Akt in endometrial cells. Thus, estradiol may exert part of its proliferative and antiapoptotic effects by a nongenomic manner through the Akt signaling pathway.  相似文献   

18.
The aim of the work was to investigate the differential regulation by dehydroepiandrosterone (DHEA) of the osteoblastic production via the estrogen receptor beta (ER β)-mediated signaling pathway. Having developed hMG63-ER β cells and hMG63-shER β cells, we analyzed the regulation by DHEA of human osteoblastic viability, the receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), and the differential expression of ER β, ER α, or p-ERK1/2 (extracellular signal-regulated kinase) in hMG63, hMG63-shER β, and hMG63-ER β cells pretreated with or without U0126, flutamide, and ICI 182780, followed by DHEA culture. When the level of ER β was high, DHEA (10 - 7 mol/l) could effectively amplify the proliferation and inhibit the etoposide-induced apoptosis of hMG63 cells (p<0.01 and p<0.05, respectively), which was blocked by U0126. When the expression of ER β was silenced, DHEA could not significantly improve the viability of hMG63. In the presence of ER β, DHEA activated the pERK1/2-MAPK signaling pathway but not p38 and JNK. Besides, the regulation of p-ERK1/2 upon DHEA treatment was mainly modulated by ER β instead of androgen receptor and ER α. The secretion of OPG was declined following the silence of ER β (p<0.05). RANKL and ER α, however, were unaffected by culture with or without DHEA and U0126, regardless of the ER β level. DHEA seems to act selectively on osteoblasts via the dominant ER β receptor, which mediates amplified cell viability through the MAPK signaling pathway involving pERK1/2 and upregulates the production of OPG rather than RANKL.  相似文献   

19.
We examined the possible involvement of mitogen-activated protein (MAP) kinase activation in the secretory process and gene expression of prolactin and growth hormone. Thyrotropin-releasing hormone (TRH) rapidly stimulated the secretion of both prolactin and growth hormone from GH3 cells. Secretion induced by TRH was not inhibited by 50 microM PD098059, but was completely inhibited by 1 microM wortmannin and 10 microM KN93, suggesting that MAP kinase does not mediate the secretory process. Stimulation of GH3 cells with TRH significantly increased the mRNA level of prolactin, whereas expression of growth hormone mRNA was largely attenuated. The increase in prolactin mRNA stimulated by TRH was inhibited by addition of PD098059, and the decrease in growth hormone mRNA was also inhibited by PD098059. Transfection of the cells with a pFC-MEKK vector (a constitutively active MAP kinase kinase kinase), significantly increased the synthesis of prolactin and decreased the synthesis of growth hormone. These data taken together indicate that MAP kinase mediates TRH-induced regulation of prolactin and growth hormone gene expression. Reporter gene assays showed that prolactin promoter activity was increased by TRH and was completely inhibited by addition of PD098059, but that the promoter activity of growth hormone was unchanged by TRH. These results suggest that TRH stimulates both prolactin and growth hormone secretion, but that the gene expressions of prolactin and growth hormone are differentially regulated by TRH and are mediated by different mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号